Protonendiode

Bochumer Forscher entdecken Protonendiode

01.09.2010 | Redakteur: Ilka Ottleben

Forscher um Prof. Dr. Klaus Gerwert entdeckten die Protonendiode und konnten Wasser als aktives Bauelement nachweisen.

Bochumer Biophysiker haben eine Diode für Protonen entdeckt: Genau wie das elektronische Bauteil die Flussrichtung des elektrischen Stroms vorgibt, sorgt die „Protonendiode“ dafür, dass Protonen nur in eine Richtung durch eine Zellmembran geschleust werden können.

Bochum – Die Forscher um Prof. Dr. Klaus Gerwert (Lehrstuhl für Biophysik der RUB) konnten durch eine Kombination aus Molekularbiologie, Röntgenstrukturanalyse, zeitaufgelöster FTIR-Spektroskopie und Biomolekularen Simulationen beobachten, dass Wassermoleküle als aktive Bauteile der Diode eine wichtige Rolle spielen.

Die Protonendiode spielt eine wichtige Rolle bei der Energiegewinnung von Zellen. Lichtgetriebene Protonenpumpen – bestimmte Proteine, die die Zellmembran durchspannen – schleusen Protonen aus der Zelle heraus, so dass außen ein Überdruck entsteht, „ganz ähnlich wie der Wasserdruck an einer Staumauer“, verdeutlicht Prof. Gerwert. An anderer Stelle drängen die Protonen wieder in die Zellen hinein um das Konzentrationsgefälle auszugleichen, und treiben dabei die Turbinen der Zelle an, Proteine namens ATP-asen. Die dabei freiwerdende Energie wird umgewandelt in den universellen Kraftstoff der Zellen, ATP (Adenosintriphosphat). „Dieser Ablauf ist eine Art archaische Photosynthese“, erklärt Prof. Gerwert. „Die Lichtenergie wird letztlich in für den Organismus nutzbare Energie umgewandelt.“

Wasser ist so wichtig wie Aminosäuren

Besonders die Rolle der Wassermoleküle in Proteinen war lange unklar. „Früher glaubte man, dass die Wassermoleküle durch Zufall in Proteine hineingeraten würden und keine besondere Funktion erfüllten“, so Gerwert. Der in Bochum geborene Manfred Eigen wurde 1967 mit dem Nobelpreis für Chemie ausgezeichnet, weil er erklären konnte, warum Wasser und Eis Protonen extrem schnell leiten können. Die aktuelle Arbeit zeigt, dass auch Proteine genau diesen Mechanismus nutzen und die Wassermoleküle im Protein sehr wohl eine aktive Funktion ausüben. Dieses Ergebnis unterstützt die von Klaus Gerwert 2006 in Nature aufgestellte Hypothese, dass proteingebundene Wassermoleküle genauso wichtige katalytische Bauelemente für die Funktion von Proteinen sind wie die Aminosäuren, die Baussteine des Lebens.

Ergebnisse durch interdisziplinären Ansatz

Die Bochumer Forscher konnten ihre Ergebnisse in einem interdisziplinären Ansatz durch eine Kombination aus Molekularbiologie, Röntgenstrukturanalyse, zeitaufgelöster FTIR-Spektroskopie und Biomolekularen Simulationen erzielen. Diese Kombination zeigt die dynamischen Vorgänge im Protein nach Lichtanregung mit atomarer Auflösung. „Man kann verfolgen, wie das Proton von der zentralen Protonenbindestelle im Innern des Proteins über eine Aminosäure und dann über einen protonierten Wassercluster an die Membranoberfläche transportiert wird“, beschreibt Prof. Gerwert. Der interdisziplinäre Ansatz erweitert jetzt die klassischen Methoden der Strukturbiologie, Röntgenstrukturanalyse und Kernspinresonanzspektroskopie (NMR), da er einen kompletten Film liefert und nicht nur Standbilder von Proteinen. Die Experimente in Bochum wurden durch Computersimulationen in Shanghai ergänzt.

Originalpublikationen:

[1] Wolf, S., Freier, E., Potschies, M., Hofmann, E. and Gerwert, K.: „Directional Proton Transfer in Membrane Proteins Achieved through Protonated Protein-Bound Water Molecules: A Proton Diode“ Angewandte Chemie International Edition, DOI: 10.1002/anie.201001243

[2] Garczarek, F., Gerwert, K.: „Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy“. In: Nature 439, 109-112 (2006)

Kommentar zu diesem Artikel abgeben

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 358897) | Fotos: Lehrstuhl für Biophysik der RUB, Ruhr-Universität Bochum