English China

Van-der-Waals-Kräfte Chemische Stabilität mit der Kraft des Geckos

Redakteur: Dr. Ilka Ottleben

Van-der-Waals-Kräfte sind für eine Vielzahl von Phänomenen verantwortlich – einzeln genommen sind sie aber schwach und lassen sich deshalb nur schlecht direkt bei chemischen Verbindungen berücksichtigen. Gießener Forscher konnten nun jedoch erstmals nachweisen, dass die van-der-Waals-Kräfte sogar extrem lange Bindungen zwischen Kohlenstoffmolekülen stabilisieren können.

Anbieter zum Thema

Van-der-Waals-Kräfte halten nicht nur den Gecko senkrecht, sondern auch Moleküle zusammen. (Bild: animals-digital / Thomas Brodmann)
Van-der-Waals-Kräfte halten nicht nur den Gecko senkrecht, sondern auch Moleküle zusammen. (Bild: animals-digital / Thomas Brodmann)

Gießen – Der Gecko macht es vor: Ohne Saugnäpfe, nur mit unzähligen winzigen Härchen an seinen Füßen kann er an spiegelglatten Oberflächen haften. Möglich machen dies die so genannten van-der-Waals-Kräfte, die unter dem Grundsatz „Stoffe ziehen sich immer an“ für das Zusammenhalten von Gasen und anderen Stoffen sorgen. Diese „Dispersionswechselwirkungen“ sind aber einzeln genommen schwach und lassen sich deshalb nur schlecht direkt bei chemischen Verbindungen berücksichtigen. Forscher um den Gießener Chemiker Prof. Dr. Peter R. Schreiner konnten nun jedoch erstmals nachweisen, dass die van-der-Waals-Kräfte sogar extrem lange (und deshalb eigentlich schwache) Bindungen zwischen Kohlenstoffmolekülen stabilisieren können.

Stabile Moleküle mit Bindungslängen von über 170 Pikometern

In der Strukturchemie geht man davon aus, dass kurze Bindungen zwischen Atomen besonders stark sind und lange besonders schwach. So haben typische Kohlenstoff-Kohlenstoff-Bindungen eine durchschnittliche Länge von 154 Pikometern. Es ist äußerst schwer, C–C-Bindungen von mehr als 165 Pikometern Länge herzustellen. Solche Strukturen sind instabil und zerfallen schnell. Den Gießener Chemikern ist es nun gelungen, sehr stabile Moleküle mit Bindungslängen von über 170 Pikometern zu synthetisieren.

Diese Ergebnisse haben Bedeutung für die molekulare Erkennung, die Enzymkatalyse, neue Materialien und für das gezielte Design neuer chemischer Strukturen, die bis dato unerreichbar schienen – wie zum Beispiel Materialien, die auch ohne Klebstoff zusammengehalten werden. Denkbar wären Anwendungen in der Nanotechnologie, aber auch in der Medizin. Derzeit sucht die Wissenschaft bereits nach Möglichkeiten, die Gecko-Kräfte für den Menschen nutzbar zu machen. So ist beispielsweise ein „Gecko-Tape“ in der Entwicklung, das wie ein Klebeband funktioniert.

Lange Bindungen zwischen so genannten Nanodiamanten

Die Arbeit der Gießener Forscher beschreibt, dass vermeintlich instabile Moleküle durch Dispersionskräfte äußert stabil werden können. Dazu benutzen die Chemiker so genannte „Nanodiamanten“, also diamantartige Moleküle von der Größe weniger Nanometer, die aus Rohöl in großen Mengen zugänglich sind. Da perfekte Nanodiamanten extrem glatt und flach sind, bestand die Idee darin, zwei Nanodiamanten miteinander zu verknüpfen, um die Dispersionskräfte zwischen ihren Oberflächen maximal auszunutzen.

Diese Moleküle ließen sich unerwartet leicht herstellen und strukturell sehr genau charakterisieren. Die Hoffnungen auf lange Bindungen zwischen den Nanodiamant-Bausteinen wurden übertroffen: Das größte Molekül weist eine C–C-Einfachbindung jenseits der Grenze von 170 Pikometern auf. Dies ist die längste jemals in einem gesättigten Kohlenwasserstoff gefundene C–C Bindung. Trotzdem sind diese Verbindungen äußerst stabil. Sie zersetzen sich erst nach mehrstündiger Erwärmung auf über 250°C. Die hohe Stabilität der Zielverbindungen geht einzig und allein auf die Dispersionskräfte zurück, wie die Autoren mit quantenmechanischen Berechnungen zeigen.

Die Arbeiten wurden durch Drittmittel der Deutschen Forschungsgemeinschaft (DFG) und durch das U.S. Department of Energy gefördert.

Originalpublikation:

Peter R. Schreiner, Lesya V. Chernish, Pavel A. Gunchenko, Evgeniya Yu. Tikhonchuk, Heike Hausmann, Michael Serafin, Sabine Schlecht, Jeremy E. P. Dahl, Robert M. K. Carlson, Andrey A. Fokin: Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces, pp 308-311, Nature 2011, 477 (7364) DOI: 10.1038/nature10367

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung.

Aufklappen für Details zu Ihrer Einwilligung

(ID:29264560)