Suchen

Antibiotika Damit Antibiotika so wirken, wie sie sollen

| Redakteur: Dr. Ilka Ottleben

Forscher der ETH Zürich haben die Struktur der großen Untereinheit des Ribosoms der Mitochondrien bis ins atomare Detail entschlüsselt. Dies ermöglicht nie dagewesene Einblicke in die molekulare Architektur dieses Ribosoms und in die Wirkungsweise von Antibiotika.

Firmen zum Thema

Farbenfrohes Modell der Struktur der großen Untereinheit des mitochondriellen Ribosoms beim Säugetier.
Farbenfrohes Modell der Struktur der großen Untereinheit des mitochondriellen Ribosoms beim Säugetier.
(Grafik: Gruppe Prof. N.Ban / ETH Zürich)

Zürich/Schweiz – Ein Team von Forschenden der ETH Zürich rund um die Professoren Nenad Ban und Ruedi Aebersold hat die hoch komplexe molekulare Struktur der Mitoribosomen, den Ribosomen von Mitochondrien, studiert. Ribosomen kommen in den Zellen aller lebenden Organismen vor. Allerdings weisen höhere Organismen (Eukaryoten), zu denen neben Pilzen, Pflanzen und Tieren auch Menschen zählen, wesentlich komplexere Ribosomen auf als Bakterien. Bei Eukaryoten lassen sich die Ribosomen zudem in zwei Typen unterteilen: diejenigen im Cytosol, dem Großteil der Zelle, und jenen in den Mitochondrien, den Kraftwerken der Zellen. Mitochondrien kommen dabei nur bei Eukaryoten vor.

Ribosomen dienen als Dechiffriergerät und sind eng in den Entstehungsprozess von Proteinen eingebunden. Jedes Ribosom besteht aus zwei Untereinheiten. Die kleinere Untereinheit decodiert mit Hilfe von Transfer-Ribonukleinsäuren (Transfer-RNS oder tRNS) den genetischen Code, der in Form einer Boten-RNS angeliefert wird. Die größere Untereinheit fügt die durch die Transfer-RNS gelieferten Aminosäuren wie Perlen zu einer Protein-Kette zusammen.

Noch höhere Auflösung, noch mehr Details

Mitochondrielle Ribosomen sind besonders schwierig zu untersuchen, da sie nur in geringer Zahl auftreten und schwer zu isolieren sind. Bereits zu Jahresbeginn hatten die ETH-Forschenden die molekulare Struktur der großen Untereinheit des Mitoribosoms von Säugetierzellen bis zu einer Auflösung von 4,9 Angström (weniger als 0,5 Nanometer) aufgeklärt. Allerdings war diese Auflösung nicht hoch genug, um zuverlässig ein atomares Modell der damals unbekannten Struktur zu bauen. Dies ist dem Team von ETH-Professor Nenad Ban jetzt gelungen. Sie konnten die gesamte Struktur bei 3,4 Angström (0,34 Nanometer) entschlüsseln.

Bei den Untersuchungen kamen die hochauflösende Kryo-Elektronenmikroskopie am Elektronenmikroskopie-Zentrum der ETH Zürich (ScopeM) und modernste Methoden der Massenspektrometrie zum Einsatz. Aufgrund jüngster technischer Fortschritte in der Kryo-Elektronenmikroskopie und der Entwicklung von Elektronenkameras, die selbst geringste Bewegungen korrigieren können, ist es seit kurzem möglich, Biomoleküle mit einer Auflösung von weniger als vier Angström aufzunehmen.

(ID:42988705)