Physikalische Konstante gesucht Defektfreie Schichten für Siliziumkugeln sollen bei Neudefinition des Kilogramms helfen
Das Ur-Kilogramm, auf das alle Waagen kalibriert sind, verliert an Gewicht. Internationale Bemühungen streben an, die Basiseinheit der Masse neu zu definieren und künftig auf Naturkonstanten zu beziehen. Hierfür wird im sogenannten Avogadro-Experiment bestimmt, wie viele Atome in nahezu perfekten Siliziumkugeln enthalten sind. Fraunhofer-Forschern ist die homogene Beschichtung der Kugeloberfläche gelungen – unter anderem lässt sich dadurch die Messunsicherheit auf einen Bereich unter zehn Mikrogramm begrenzen.
Anbieter zum Thema

Braunschweig – Ein Kilo ist nicht mehr 1000 Gramm schwer. Denn das Maß der Gewichte, das Ur-Kilogramm, wird immer leichter. Die Ursache dafür ist unbekannt. Um von dem Zylinder, der in Paris in einem Tresor gelagert wird, unabhängig zu werden, suchen Forscher weltweit nach Alternativen. Geplant ist, das Kilogramm neu zu definieren. Künftig soll eine physikalische Konstante das materielle Kilogramm ersetzen.
Um dies zu realisieren, führt ein Team der Physikalisch-Technischen Bundesanstalt (PTB) Experimente mit Kugeln aus istotopenangereichertem Silizium durch, die als neuer Kalibrierstandard verwendet werden könnten. Dabei bestimmen die Experten die Avogadro-Konstante, die die Anzahl der Atome in einem Mol angibt. „Wir errechnen die Anzahl der Atome in einer Kugel und erhalten über mathematische Gleichungen die Zahl der Atome pro Mol. Vereinfacht gesagt finden wir heraus, was ein Silizium-Atom wiegt und können im Umkehrschluss berechnen, wie viel Silizium-Atome für ein Kilogramm erforderlich sind“, erläutert Dr. Ingo Busch, Physiker an der PTB in Braunschweig. „Das Mol ist der Mittler zwischen der atomaren Massenskala und dem Kilogramm.“
Beim Herstellen der Kugeln, was ebenfalls an der PTB erfolgt, bildet sich eine natürliche Oxidschicht aus Siliziumdioxid, SiO2. Diese hat ebenfalls Einfluss auf Masse und Volumen der Siliziumkugeln. Das Problem: Die native Schicht wächst langsam und zum Teil ungleichmäßig. Dadurch lässt sich das tatsächliche Gewicht sowohl der Oxidschicht als auch der Kugel sehr schwer messen. Gefragt ist daher eine alternative, homogene Beschichtung, um Messunsicherheiten zu verringern und Volumen und Masse der Kugel präzise bestimmen zu können.
Alternative SiO2-Schicht minimiert Messunsicherheiten
Forschern des benachbarten Fraunhofer-Instituts für Schicht- und Oberflächentechnik IST ist es gelungen, eine Siliziumkugel mit einer solchen alternativen SiO2-Oberfläche zu beschichten, deren Beschaffenheit höchsten Anforderungen genügt. „Mit unserem Verfahren können wir eine SiO2-Schicht mit definierter Rauheit und einstellbarer Schichtdicke auf die Kugel aufbringen. Die Schicht ist darüber hinaus stöchiometrisch. Dies bedeutet, dass das Verhältnis der einzelnen Atome untereinander beziehungsweise das Verhältnis zwischen Silizium und Sauerstoff konstant ist“, sagt Tobias Graumann, Wissenschaftler am IST.
Als Beschichtungsverfahren wählten die IST-Forscher die Atomlagenabscheidung ALD, kurz für Atomic Layer Deposition. Der Vorteil der Methode: Eine reproduzierbare, extrem dünne Oxidschicht mit homogener Dicke kann auf der Kugel aufgebracht werden. Potentielle Verunreinigungen wie Kohlenstoff oder Stickstoff liegen unterhalb der Nachweisgrenze. Die Rauheit der Schichten bleibt unter einem Nanometer. „Die Rauheit der Kugel wird durch die Beschichtung nicht nennenswert erhöht. Dies ist ein Faktor, damit die Messunsicherheit 10 Mikrogramm nicht überschreitet. Ein Fingerabdruck wiegt bereits mehr“, sagt Graumann. Auch der Zeitfaktor spielt eine wichtige Rolle. Der Fertigungsprozess der Kugeln lässt sich durch den Auftrag der alternativen SiO2-Oberfläche beschleunigen, da das Wachstum der nativen Oxidschicht mehrere Monate dauert.
(ID:44775378)