English China

Kristallstruktur von Kohlensäure Ein offenes Geheimnis: Kohlensäure existiert – jetzt auch nachweislich

Quelle: Pressemitteilung Technische Universität München (TUM)

Anbieter zum Thema

Alle reden von ihr, doch bisher war sie nur flüchtige Theorie: Kohlensäure. Die instabile Verbindung aus z. B. Sprudelwasser wurde bislang noch nicht als Kristallstruktur nachgewiesen. Dies haben Forscher an der Technischen Universität München nun geändert – mit hohem Druck und Neutronenstrahlen.

Wir kennen ihre Spuren aus Sprudelwasser und Champanger – doch die Kristallsturktur von Kohlensäure war bisher nie experimentell nachgewiesen.
Wir kennen ihre Spuren aus Sprudelwasser und Champanger – doch die Kristallsturktur von Kohlensäure war bisher nie experimentell nachgewiesen.
(Bild: gemeinfrei, Anthony DELANOIX / Unsplash)

Jeder glaubt sie zu kennen, und doch ist sie eines der großen Geheimnisse der Chemie: Kohlensäure. Niemand hatte bisher je die Molekülstruktur der Verbindung aus Wasserstoff, Sauerstoff und Kohlenstoff mit der chemischen Summenformel H2CO3 erfasst. Die Verbindung zerfällt – zumindest an der Erdoberfläche – schnell in Wasser und Kohlendioxid. beziehungsweise reagiert zu Hydrogenkarbonat, welches ebenso zerfällt und Sprudelwasser oder Champagner das typische Pricken verleiht. „Weil man nicht glaubt, was man nicht sieht, behaupten die Chemielehrbücher in aller Regel, dass es Kohlensäure nicht gibt, oder zumindest, dass sie nicht zweifelsfrei isoliert wurde“, erklärt Prof. Richard Dronskowski, Direktor des Instituts für Anorganische Chemie der RWTH Aachen. Zusammen mit seinem Team und dem chinesischen Hoffmann Institute for Advanced Materials (HIAM) im chinesischen Shenzhen ist es ihm jetzt erstmals gelungen, kristalline Kohlensäure herzustellen und ihre Struktur zu analysieren.

Acht Jahre haben die Forscher für den Nachweis benötigt. „Unsere computergestützten Berechnungen hatten zunächst ergeben, dass man zur Handhabung tiefe Temperaturen von minus 100 Grad Celsius braucht und dass dann ein Druck von etwa 20.000 Atmosphären notwendig ist, damit sich aus Wasser und Kohlendioxid Kohlensäure-Kristalle bilden. Daher mussten wir eine Apparatur konzipieren und bauen, die extremen Bedingungen standhält“, berichtet Dronskowski. Die Wände der Messzelle, die nicht größer ist als eine Parfümflasche, bestehen aus einer eigens gefertigten Metalllegierung; ein Diamantfenster erlaubt einen Blick ins Innere. In dieser Zelle wurde ein Gemenge aus Wassereis und festem Kohlendioxid (Trockeneis) mithilfe einer Presse unter Druck gesetzt. Und tatsächlich bildeten sich unter diesen extremen Bedingungen Kristalle.

Per Neutronenstrahl die Struktur der Kohlensäure aufklären

Um mehr über die Zusammensetzung und Struktur der erzeugten Kristalle zu erfahren, reiste das Team mitsamt der Messzelle nach München an die Forschungs-Neutronenquelle FRM II der Technischen Universität München (TUM). „Wir brauchten für die Untersuchung unbedingt Neutronenstrahlen“, sagt Studienleiter Dronskowski. „Röntgenstrahlen wechselwirken mit den Elektronen der Atome. Neutronen hingegen interagieren mit den Kernen, daher kann man mit ihnen auch sehr leichte Atome, beispielsweise Wasserstoff, der nur ein Elektron enthält, sichtbar machen – das war für uns essenziell, weil unsere Kristalle Wasserstoff enthalten. Wir mussten wissen, wo die Wasserstoffatome im Molekül liegen.“

Um mithilfe von Neutronenstrahlen die atomare Struktur eines Kristalls zu untersuchen, benötigt man extrem empfindliche Messgeräte, beispielsweise das Materialforschungsdiffraktometer Stress-Spec. Es wurde entwickelt, um Verschiebungen im Kristallgitter sichtbar zu machen, die durch Spannungen verursacht wurden.

Für die Messung wird aus dem Neutronenstrahl, der aus dem Forschungsreaktor FRM II kommt, mittels eines Monochromators eine bestimmte Wellenlänge selektiert. Diese monochromatische Strahlung lässt sich durch spezielle Blenden so ausrichten, dass man nur auf die Probe im Inneren der Messzelle fokussiert. „Auf diese Weise können wir sehr kleine Probenvolumina in einer sehr hohen Auflösung untersuchen – das war für die Analyse der Probe aus Aachen, die ja nur einige Kubikmillimeter groß war, ideal“, erklärt Dr. Michael Hofmann, TUM-Mitarbeiter und Gruppenleiter am FRM II. Trifft der monochromatisierte Neutronenstrahl auf einen Kristall, wird er durch die Wechselwirkung mit den Atomen abgelenkt. Auf diese Weise entsteht ein Beugungsmuster, aus dem sich – zumindest theoretisch – die Struktur des Kristallgitters ableiten lässt. „Praktisch war die Auswertung der Messdaten eine echte Herausforderung“, erinnert sich Dronskowski.

Ein Puzzle für zwei Jahre

Dr. Michael Hofmann justiert eine Probe am Neutronendiffraktometer Stress-Spec. Mithilfe des empfindlichen Messgeräts konnten die Forscher auch die Kristallstruktur von Kohlensäure nachweisen.
Dr. Michael Hofmann justiert eine Probe am Neutronendiffraktometer Stress-Spec. Mithilfe des empfindlichen Messgeräts konnten die Forscher auch die Kristallstruktur von Kohlensäure nachweisen.
(Bild: Bernhard Ludewig 2012)

Die Forscher benötigten über zwei Jahre, um mit ihren Algorithmen tausende von Strukturmöglichkeiten zu ermitteln und diese mit dem experimentellen Resultat zu vergleichen. Auf diese Weise gelang es schließlich, die Struktur der Kristalle zu identifizieren, die sich im Inneren der Messzelle gebildet hatten: Sie bestehen tatsächlich aus H2CO3-Molekülen, die durch Wasserstoff-Brücken miteinander verbunden sind und eine niedrigsymmetrische – in der Fachsprache „monokline“ – Struktur bilden.

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung.

Aufklappen für Details zu Ihrer Einwilligung
Unsere Arbeit war in erster Linie Grundlagenforschung: Chemiker müssen das einfach wissen, sie können nicht anders.

Prof. Richard Dronskowski, Direktor des Instituts für Anorganische Chemie der RWTH Aachen

„Jetzt, wo wir die Umstände kennen, unter denen sich Kohlensäure bildet, sind praktische Anwendungen denkbar“, betont Dronskowski. So können Kosmologen künftig, wenn sie auf fernen Planeten oder Monden Spuren von Kohlensäure finden, auf die Bildungsbedingungen rückschließen. Interessant könnten die Ergebnisse auch für das Geoengineering sein: So lässt sich erst jetzt berechnen, wann Kohlendioxid, das unter hohem Druck in den feuchten Untergrund gepresst wird, unter Umständen Kohlensäurekristalle bildet.

Originalpublikation: Sebastian Benz, Da Chen, Andreas Möller, Michael Hofmann, David Schnieders, Richard Dronskowski: The Crystal Structure of Carbonic Acid, Inorganics, 3.9.2022, 10(9), 132; DOI: 10.3390/inorganics10090132

(ID:48761267)