English China

Quantencomputer Ein Quantenstift für einzelne Atome

Redakteur: Dr. Ilka Ottleben

Physikern am Max-Planck-Institut für Quantenoptik ist es gelungen, Atome in einem Lichtgitter einzeln zu adressieren und beliebig anzuordnen. Dieses ist unter anderem für die Realisierung von Quantencomputern und zur Simulation von Festkörpersystemen von großer Bedeutung.

Firmen zum Thema

Abb. 1: Mit Hilfe eines Laserstrahls können einzelne Atome im Lichtgitter gezielt adressiert und deren Spinzustand verändert werden ... (Bild: MPQ)
Abb. 1: Mit Hilfe eines Laserstrahls können einzelne Atome im Lichtgitter gezielt adressiert und deren Spinzustand verändert werden ... (Bild: MPQ)

Garching– Wissenschaftler um Stefan Kuhr und Immanuel Bloch vom Max-Planck-Institut für Quantenoptik konnten erstmals einzelne Atome mit Laserlicht ansprechen und zu beliebigen Strukturen anordnen. So haben die Forscher die Atome entlang einer Linie aufgereiht und deren Tunneldynamik in einem „Wettrennen“ der Atome direkt beobachtet. Ein Register aus mehreren hundert adressierbaren Quantenteilchen könnte in einem Quantencomputer der Speicherung und Verarbeitung von Quanteninformation dienen.

Im vorliegenden Experiment kühlen die Wissenschaftler zunächst Rubidium-Atome auf eine Temperatur von einigen Milliardstel Grad über dem absoluten Nullpunkt und laden diese dann in einen künstlichen Kristall aus Licht. Solche so genannten optischen Gitter werden von den Forschern durch die Überlagerung mehrerer Laserstrahlen erzeugt. Die Atome werden im Lichtgitter festgehalten – ähnlich wie Murmeln in den Mulden eines Eierkartons.

Bildergalerie

Das Team um Kuhr und Bloch zeigte bereits vor einigen Monaten, dass sich in diesem Lichtgitter jeder Platz mit genau einem Atom besetzen lässt. Mit Hilfe eines Mikroskops konnten die Wissenschaftler Atom für Atom sichtbar machen und dabei ihre schalenförmige Anordnung in diesem „Mott-Isolator“ nachweisen. Nun ist es den Forschern gelungen, die auf ihren Gitterplätzen fixierten Atome einzeln anzusprechen und ihre jeweiligen Energiezustände zu ändern. Mit Hilfe des Mikroskops fokussierten sie einen Laserstrahl auf einen Durchmesser von etwa 600 nm, was knapp über dem Gitterabstand liegt, und richteten ihn mit hoher Genauigkeit auf einzelne Atome.

Der Laserstrahl deformiert die atomare Elektronenhülle ein kleines bisschen und verändert damit die Energiedifferenz zwischen den beiden Spin-Zuständen des Atoms. Atome mit einem Spin, d.h. einem Eigendrehimpuls, verhalten sich wie kleine Magnetnadeln, die sich in zwei entgegen gesetzten Richtungen ausrichten können. Bestrahlt man die Atome nun mit Mikrowellen, die mit dem modifizierten Spin-Übergang in Resonanz sind, dann absorbieren nur die adressierten Atome ein Mikrowellen-Photon, was ein Umklappen ihres Spins zur Folge hat. Alle anderen Atome im Gitter bleiben von dem Mikrowellenfeld unbeeinflusst.

(ID:26233150)