Suchen

Halogenbrücken als Katalysatoren Evonik verleiht Preis an umweltbewussten Katalyseforscher

| Redakteur: Tobias Hüser

Viele der heute eingesetzten Katalysatoren basieren auf teuren und umweltschädlichen Metallen. Stefan Huber und Florian Kniep vom Lehrstuhl für Organische Chemie der Technischen Universität München zeigen nun eine Alternative auf: Halogenbrücken-Donoren sind ungiftig und können als organische Katalysatoren wirken. Für seine Arbeit wurde Kniep mit dem Evonik-Forschungspreis ausgezeichnet.

Firmen zum Thema

Halogenbrücken zweier Iod-Atome (blau) lockern die Bindung zwischen Chlor- (grün) und Kohlenstoffatom (grau). Das Chloratom kann so leichter gegen eine andere Gruppe ausgetauscht werden.
Halogenbrücken zweier Iod-Atome (blau) lockern die Bindung zwischen Chlor- (grün) und Kohlenstoffatom (grau). Das Chloratom kann so leichter gegen eine andere Gruppe ausgetauscht werden.
(Bild: Stefan Huber / TUM)

München – Etwa 90 % aller chemischen Produkte benötigen im Lauf ihrer Herstellung einen Katalysator. Oft jedoch basieren Katalysatoren organischer Reaktionen, wie sie beispielweise in der Kunststoffherstellung verwendet werden, auf teuren und giftigen Schwer- oder Übergangsmetallverbindungen. Eine gute Alternative sind da organische, nicht-metallische Reaktionsbeschleuniger.

Viele solcher Organokatalysatoren basierten bislang auf dem Lewis-Säure/Base-Prinzip: Stark positiv polarisierte Wasserstoffatome, sogenannte Lewis-Säuren, interagieren über schwache Wasserstoffbrückenbindungen mit negativ polarisierten Substraten, sogenannten Lewis-Basen. Nun stellen Wissenschaftler um Stefan Huber, Arbeitsgruppenleiter am Institut für Organische Chemie der Technischen Universität München (TUM) und Florian Kniep, Doktorand am Institut für Organische Chemie einen neuen Typ von Organokatalysatoren vor, der nicht über ein Wasserstoff- sondern über ein Halogenatom – beispielsweise ein Iodatom – an das Substrat bindet: sogenannte Halogenbrücken-Donoren.

Ein oder mehrere Iodatome geben den Halogenbrücken-basierten Katalysaoren besondere Eigenschaften, die neue Einsatzbereiche eröffnen. Nach einer bekannten chemischen Regel verbinden sich sogenannte harte Lewis-Säuren, die eine geringe Polarisierbarkeit aufweisen, am besten mit ebenfalls harten Lewis-Basen. Dies ist bei den Wasserstoffbrücken-basierten Katalysatoren der Fall.

„Langfristig erwarten wir, dass sich Halogenbrücken-basierte Organokatalysatoren und Wasserstoffbrücken-Donoren gegenseitig ergänzen“, sagt Kniep. „Außerdem könnten sich Halogenbrücken als vorteilhaft für zukünftige enantioselektive Umsetzungen erweisen, bei denen gezielt nur eines von zwei möglichen Molekülen entsteht.“

Für seine Arbeit auf dem Gebiet der Organokatalyse wurde Kniep Ende Juli mit dem Forschungspreis von Evonik ausgezeichnet. Die Forschungsanstrengungen wurden vom Fonds der Chemischen Industrie, der Deutschen Forschungsgemeinschaft, der Leonhart Lorenz Stiftung und der Dr. Otto Röhm Gedächtnisstiftung unterstützt.

(ID:42310650)