Worldwide China

Lithium-Ionen-Technik

Forschungspreis für Batterie-Testzelle mit separierten Elektroden

| Redakteur: Tobias Hüser

Georg Oenbrink, Leiter der Abteilung Innovation Networks & Communications bei Evonik Industries, überreicht Michael Metzger den Evonik Forschungspreis 2016.
Bildergalerie: 1 Bild
Georg Oenbrink, Leiter der Abteilung Innovation Networks & Communications bei Evonik Industries, überreicht Michael Metzger den Evonik Forschungspreis 2016. (Bild: Martin Schellerer / TU Muenchen)

Hersteller von Elektroautos und Stromspeichern setzen auf die Lithium-Ionen-Technik. Allerdings wünschen sie sich für diese Hochvolt-Anwendungen neue Elektrodenmaterialien und Elektrolyte, die höhere Spannungen aushalten. Um die zu testen und zu verbessern, hat Michael Metzger vom Lehrstuhl für Technische Elektrochemie der TU München (TUM) eine innovative Batterie-Testzelle entwickelt. Für seine Arbeiten wurde der Forscher unlängst mit dem Evonik Forschungspreis ausgezeichnet.

München – Lithium-Ionen-Technologie an die Anforderungen der Elektromobilität und der stationären Stromspeicher anzupassen, ist nicht trivial. Die gängigen Akkus sind für hohe Leistungen nur bedingt geeignet: „Um die Energiedichte zu erhöhen, muss man die Spannung beziehungsweise die Kapazität vergrößern, und da stoßen die traditionellen Elektrodenmaterialien und Elektrolytflüssigkeiten an ihre Grenzen“, sagt TUM-Forscher Michael Metzger.

Weltweit läuft daher die Forschung auf Hochtouren. Ingenieure experimentieren beispielsweise mit speziellen Elektrodenmaterialien, die statt der bisher maximalen 4,2 bis 4,3 V eine Spannung von nahe 5 V liefern können.Dieses „Batterie-Doping“ hat jedoch auch Nebenwirkungen: So können Veränderungen der chemischen Zusammensetzung der Elektroden beziehungsweise der Elektrolyte dazu führen, dass die Leistung der Akkus schon nach wenigen Ladezyklen abnimmt oder dass sich an den Elektroden Gase bilden, welche die Batteriezellen aufblähen.

„Die Zukunft der Lithium-Ionen-Akkus hängt davon ab, ob man diese unerwünschten Reaktionen in den Griff bekommt“, prognostiziert Metzger. Eine Voraussetzung dafür hat er jetzt geschaffen: Mit der neuen Batterie-Testzelle, die er zusammen mit seinem Team entwickelt hat, lassen sich die chemischen Prozesse, die beim Laden und Entladen ablaufen, detailliert untersuchen.

Eine Testzelle für die Akkus der Zukunft

Drei Jahre haben die Forscher an der Apparatur getüftelt. „Normalerweise sind Elektrolytflüssigkeit sowie Elektroden – die positive Kathode und die negative Anode – elektrochemisch in einem ständigen Austausch“, so Metzger. „Es war daher bislang nicht möglich, die Reaktionen an Anode und Kathode getrennt voneinander zu untersuchen. Wir sind die ersten, denen das gelungen ist.“

Der Trick: Die Batterie-Testzelle, die wie jeder Lithium-Ionen-Akku aus Anode, Kathode und dem Elektrolyten besteht, ist nicht vollständig abgeschlossen, sondern mit einer dünnen Kapillare versehen. Durch diese können Gase, die beim Laden und Entladen frei werden, abgeleitet und in einem Massenspektrometer untersucht werden.

Um die Vorgänge an Anode und Kathode getrennt studieren zu können, haben die Ingenieure außerdem eine Membran – ein dünnes mit Aluminium und Kunststoff beschichtetes Glaskeramik-Plättchen – so modifiziert, dass sie nur für Lithium-Ionen, nicht aber für alle anderen Bestandteile der Elektrolytflüssigkeit durchlässig ist.

Wasser ist Gift für den Akku

Mit ihrer Testzelle konnten die Forscher erstmals exakt nachvollziehen, was im Inneren eines Hochvolt-Akkus passiert. Die Ergebnisse zeigen, dass die Stabilität von Elektroden und Elektrolyt von verschiedenen Faktoren abhängt – beispielsweise der Ladespannung, der Betriebstemperatur sowie kleinsten chemischen Verunreinigungen:

  • Je höher die angelegte Spannung und die Temperatur, desto schneller zersetzt sich die Elektrolytflüssigkeit. Die dabei frei werdenden Gase, hauptsächlich Kohlenmonoxid- und Kohlendioxid, können dazu führen, dass sich das Gehäuse aufbläht.
  • Schon kleinste Spuren von Wasser, die in die Zelle eindringen, setzen Wasserstoff an der Anode frei und agieren als Oxidationsmittel für den Kohlenstoff in der Kathode. Dies beeinträchtigt die Leitfähigkeit der Elektrode.
  • Die chemischen Reaktionen, die an Anode und Kathode ablaufen, führen zu Wechselwirkungen. Dieser „Cross-Talk“, der bisher kaum erforscht ist, setzt die Leistung der Zelle insgesamt herab.

Inhalt des Artikels:

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.


copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 44429696 / Wissenschaft & Forschung)