English China

Mikroskopie von Nanopartikeln Grobes Licht für feine Bilder nutzen

Quelle: Pressemitteilung Max-Planck-Institut für Polymerforschung Lesedauer: 2 min |

Anbieter zum Thema

Ein Mikroskop zeigt Welten, die dem bloßen Auge verborgen bleiben. Doch die Wellenlänge des Lichts begrenzt, wie klein die untersuchten Strukturen sein können. Dass nun Max-Planck-Forscher trotzdem mit optischer Mikroskopie Nanopartikel und deren Oberfläche untersuchen, wird durch eine besondere Technik möglich.

Nanopartikel eignen sich wegen ihrer geringen Größe für biomedizinische Anwendungen, indem sie als eine Art Behälter Wirkstoffe zum Ziel transportieren. Im Idealfall sind ihre Oberflächen „funktionalisiert“ – also mit einem molekularen Puzzlestück versehen, was die Partikel nur an gewünschten Zielzellen im Körper andocken lässt.

Die Untersuchung solcher Partikel und der sich darauf befindenden Moleküle ist jedoch schwierig: Licht ist grundsätzlich zu „grob“, um solche winzigen Teilchen in einem Lichtmikroskop abzubilden. Sichtbares Licht im Bereich von UV bis Infrarot kann maximal Partikel mit einer Größe von 200 Nanometern auflösen. Das reicht nicht aus, um festzustellen, wo beispielsweise ein molekulares Puzzlestück auf der Partikeloberfläche sitzt oder mit wie vielen Wirkstoff-Molekülen ein Nanopartikel funktionalisiert ist.

Das ist so ähnlich, wie wenn man versuchen würde, mit einem Hammer eine Schallplatte anzuhören, wo man doch eigentlich eine Nadel braucht“, erklärt Ingo Lieberwirth, Gruppenleiter im Arbeitskreis von Katharina Landfester am Max-Planck-Institut für Polymerforschung. Lieberwirth leitet die Gruppe „Elektronenmikroskopie“ und weiß daher: „Elektronenmikroskope können solche Partikel gut abbilden – jedoch ist die Gefahr auch groß, dass die verwendeten Elektronen die angedockten Moleküle beschädigen.“

Blinkende Präzision

Daher haben sich die Forscher einer Methode bedient, für die 2014 der Nobelpreis in Chemie verliehen wurde: In der so genannten „Superauflösenden Mikroskopie“ werden kleine fluoreszierende Partikel – Fluorophore genannt – verwendet und, im Falle der Nanopartikel, mit den Molekülen auf der Partikeloberfläche verbunden. Diese Fluorophore haben die Eigenschaft, in einem Mikroskop statistisch zu blinken. Die Position dieses Blinksignals kann viel genauer festgestellt werden, als dies bei konventioneller optischer Mikroskopie möglich wäre.

„Stellen Sie sich das einfach so vor wie zwei Personen, die nebeneinander auf einem dunklen Berg stehen und mit ihren Taschenlampen in ihre Richtung leuchten“, sagt Lieberwirth. „Wenn beide gleichzeitig leuchten, ist es schwer zu erkennen, dass es zwei Taschenlampen sind. Wenn es aber blinkt, wird der Positionsunterschied viel deutlicher.“

Ein schonendes und schnelles Bild

Das auf diese Art erhaltene Bild des Nanopartikels ist jedoch nur die halbe Wahrheit: Nanopartikel besitzen Eigenschaften, die dieses Bild verfälschen und verzerren können – z. B. Resonanzphänomene, die dafür sorgen, dass nicht nur das Flurophor, sondern auch ein Teil des Nanopartikels leuchtet. Die Wissenschaftler haben daher Nanopartikel sowohl mithilfe der Elektronenmikroskopie als auch mithilfe der superauflösenden Lichtmikroskopie aufgenommen. Während die Elektronenmikroskopie die „wahre“ Position des angedockten Moleküls liefert, sorgen physikalische Effekte im Lichtmikroskop für eine Verschiebung. Eine Software korreliert nun beide Bilder – und kann somit basierend auf der lichtmikroskopischen Aufnahme die wahre Position vorhersagen.

Die Forscher hoffen nun, mit ihrer Methode Nanopartikel im Lichtmikroskop untersuchen zu können, welches schnellere Ergebnisse liefert und die Partikel nicht zerstört. Damit können in Zukunft Nanopartikel noch genauer und umfassender untersucht werden, um so zu neuen biomedizinischen Anwendungen zu gelangen. (clu)

Weitere Infos: Homepage des EU-geförderten Projekts „Supercol“

(ID:48974648)

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung.

Aufklappen für Details zu Ihrer Einwilligung