Suchen

Zeitauflösung an Röntgenlasern Moleküldynamik auf eine billiardstel Sekunde genau verfolgen

| Redakteur: Dr. Ilka Ottleben

Mit einem neuen Rechenverfahren, das die Zeitauflösung an Röntgenlasern um das 300-Fache verbesssert, können Forscher die ultraschnellen Bewegungen von Molekülen und andere dynamische Prozesse im Nanokosmos auf eine billiardstel Sekunde genau verfolgen. Einem internationalen Forscherteam ist damit ein entscheidender Schritt in der Analyse dynamischer Prozesse gelungen.

Firmen zum Thema

Dank des neuen Algorithmus lässt sich der Zeitstempel klar erkennen.
Dank des neuen Algorithmus lässt sich der Zeitstempel klar erkennen.
(Bild: Allie Kilmer/University of Wisconsin - Milwaukee)

Hamburg – Ihre Arbeit, die jetzt im Fachjournal „Nature“ erscheint, eröffnet einen vergleichsweise einfachen Weg, elementare Reaktionsabläufe mit einer sehr präzisen Zeitauflösung zu bestimmen. Das Forscherteam um Projektleiter Professor Abbas Ourmazd von der Universität von Wisconsin in Milwaukee (USA) entwickelte dafür ein Rechenverfahren (Algorithmus), mit dessen Hilfe sich aus Daten von Experimenten an sogenannten Freie-Elektronen-Lasern (FEL) durch geschicktes Extrahieren neue Informationen gewinnen lassen. DESY-Wissenschaftler Professor Robin Santra vom Hamburger Center for Free-Electron Laser Science CFEL und seine Kollegen konnten die Ergebnisse durch quantenmechanische Simulationen bestätigen.

Völlig neue Einblicke in den Ablauf ultraschneller Reaktionen

„Die Methode hat ein unglaubliches Potenzial“, erläutert Santra, der auch Professor an der Universität Hamburg ist. Sie ermögliche völlig neue Einblicke in den Ablauf zahlreicher ultraschneller Reaktionen in Chemie und Biochemie bis hin zu elektrochemischen Anwendungen oder industriellen Prozessen. Bereiche, in denen Wissenschaftler bisher über den zeitlichen Ablauf nur spekulieren konnten, was auf mikroskopischer Ebene passiert. „Dynamische Zeitmessungen an FELs unterliegen einer extremen Unschärfe“, erklärt Santra. „Diese neue Datenanalyse erhöht die Genauigkeit um einen Faktor 300 – das ist verblüffend.“

Chemische Reaktionen und Biomolekülbewegungen laufen unvorstellbar schnell ab und entziehen sich unserem natürlichen Sehen. Sie geschehen im Bereich von Femtosekunden, also billiardstel Sekunden. Bisher gibt es keine effektiven Wege, solche molekularen Prozesse detailliert zu beobachten. Moderne Freie-Elektronen-Röntgenlaser ermöglichen zwar Belichtungszeiten im Bereich von Femtosekunden, mit ihnen lassen sich jedoch keine unmittelbaren Filme von dynamischen Prozessen machen, lediglich eine Reihe von Momentaufnahmen zu verschiedenen Zeitpunkten des untersuchten Prozesses.

Der Aufnahmezeitpunkt der Einzelbilder lässt sich allerdings nicht absolut exakt festlegen. Der Grund dafür: Wollen Forscher eine Reaktion untersuchen, lösen sie diese durch einen optischen Laserblitz aus, ein kurz darauf folgender Röntgenlaserblitz schießt einen Schnappschuss davon. Danach ist die Probe jedoch zerstört, und die Reaktion muss in einer neuen, nahezu identischen Probe noch einmal ausgelöst werden. Der Röntgenlaser blitzt jetzt zu einem etwas späteren Zeitpunkt der Reaktion – und so geht es immer weiter. Als Ergebnis erhalten die Forscher unzählige Momentaufnahmen, die sie anschließen aneinanderreihen müssen wie in einem Daumenkino. Allerdings ist die exakte zeitliche Abfolge der Röntgenlaser-Bilder nicht immer klar erkennbar, Experten bezeichnen diese Genauigkeitsschwankung als Jitter (engl. für „Fluktuation“ oder „Schwankung“). Dieser Jitter kann zu einer falschen Sortierung der Einzelbilder im Daumenkino führen.

Zwölf Millionen Dimensionen

„Die zeitliche Unschärfe ist in vielen Bereichen der Wissenschaft ein Fluch“, sagt Ourmazd. „Man hat zwar eine Menge Daten, aber ohne genauen Zeitstempel.“ Denn damit die Momentaufnahmen den Reaktionsverlauf mit einer Genauigkeit von Femtosekunden dokumentieren können, müssen optischer Laser und Röntgenlaser extrem präzise aufeinander abgestimmt sein. „Alle uns bisher bekannten experimentellen Lösungen haben es nicht geschafft, eine Zeitauflösung von besser als etwa 14 Femtosekunden zu liefern, wobei die meisten lediglich 60 Femtosekunden oder länger erreichen“, sagt Santra.

Daher wählten Ourmazd und sein Team einen anderen Weg: Sie entwickelten einen mathematischen Algorithmus, mit dessen Hilfe sie aus vorhandenen Daten Informationen mit einer zeitlichen Genauigkeit von einer Femtosekunde extrahieren können. Die einzelnen Schnappschüsse mit nicht scharf definiertem Zeitstempel werden dazu mathematisch als einzelne Punkte in einem hochdimensionalen Raum dargestellt – in der jetzt veröffentlichten Arbeit hat dieser Raum rund zwölf Millionen Dimensionen. Mit Hilfe mathematischer Mustererkennungsprozesse reduzieren die Forscher dann die Zahl der Dimensionen, indem sie gekrümmte mehrdimensionale Flächen suchen, auf denen die Punkte liegen. Ziel ist es dabei, schließlich eine – eindimensionale – Kurve zu finden, auf der alle Punkte liegen. Denn wenn sich die einzelnen Punkte nur durch die Änderung eines Parameters unterscheiden, in diesem Fall der Zeit, dann müssen sie eine Kurve im betrachteten Raum bilden. Gelingt es, diese Kurve zu finden, hat man die Punkte zeitlich geordnet.

(ID:44027732)