Worldwide China

Lernen von Helicobacter pylori

Per Mikroschwimmer zur Magenwand

| Redakteur: Dr. Ilka Ottleben

Mikropropeller mit Schleimlöser: Ein winziger Schwimmer in Form eines Korkenziehers kann durch die zähe Magenschleimhaut, dargestellt durch die schwarzen Fäden, zur Magenwand (unten) vordringen, weil eine Beschichtung mit dem Enzym Urease die Schleimhaut lokal verflüssigt.
Bildergalerie: 1 Bild
Mikropropeller mit Schleimlöser: Ein winziger Schwimmer in Form eines Korkenziehers kann durch die zähe Magenschleimhaut, dargestellt durch die schwarzen Fäden, zur Magenwand (unten) vordringen, weil eine Beschichtung mit dem Enzym Urease die Schleimhaut lokal verflüssigt. (Bild: Alejandro Posada)

Forscher des Max-Planck-Instituts für Intelligente Systeme in Stuttgart haben einen mit Enzymen beschichteten Mikropropeller entwickelt, der lokal die Magenschleimhaut verflüssigt, um sie zu durchdringen. Eines Tages könnten solche Schwimmer vielleicht pharmazeutische Wirkstoffe etwa gegen Magengeschwüre direkt an die Magenwand transportieren.

Stuttgart – Helicobacter pylori macht es vor. Das im menschlichen Magen häufig vorkommende Bakterium versteht es, sich auch durch die zähe Magenschleimhaut hindurch zu bewegen. Zu diesem Zweck scheidet es Substanzen aus, die den pH-Wert ihrer Umgebung verändern und damit den gelartigen Schleim verflüssigen. Forscher des Max-Planck-Instituts für Intelligente Systeme in Stuttgart haben dieses Prinzip aufgegriffen und nach ihm ein künstliches Mikrovehikel geschaffen, das ebenfalls viskose Schleimhäute durchdringen kann. Die Forscher verbinden damit eine konkrete Hoffnung: Eines Tages könnten solche Schwimmer vielleicht pharmazeutische Wirkstoffe direkt an die Magenwand transportieren – und dort für eine effektive Aufnahme in die Blutbahn sorgen.

Helicobacter pylori macht es vor – Partielle Verflüssigung der Magenschleimhaut

Hundert Mal dünner als ein Haar – und damit für das menschliche Auge unsichtbar – ist das Mikrovehikel, das Forscher vom Max-Planck-Institut für Intelligente Systeme in Stuttgart entwickelten. Es besteht aus einem Kopf und einem korkenzieherförmigen, etwa zwei Millionstel Meter langen Anhang. Sein Hauptbestandteil ist Siliziumdioxid, es ist jedoch außerdem mit einer dünnen Nickelschicht versehen. Diese ermöglicht es später, die Konstruktion mittels eines von außen angelegten Magnetfelds in Rotation zu versetzen. In Flüssigkeiten bewegt sich das Vehikel daher fort, als würde es von einer Schiffschraube angetrieben. Allerdings würde die Antriebskraft des Mikropropellers allein noch nicht ausreichen, ihn auch durch eine zähe Schleimhaut im menschlichen Körper wie diejenige des Magens zu befördern. Diese leistet aufgrund ihres gelartigen Aufbaus schlicht zu viel Widerstand.

An dieser Stelle brachten die Forscher die Chemie ins Spiel, die sie sich bei dem Magenbakterium Helicobacter pylori abgeschaut hatten. Die Mikrobe ist nämlich sehr wohl in der Lage, die Magenschleimhaut zu durchschwimmen – und bis an die Magenwand zu gelangen. Das Bakterium setzt dazu ein Enzym namens Urease frei. Dieses zerlegt den in der Magenflüssigkeit vorhandenen Harnstoff. Dabei wird unter anderem Ammoniak freigesetzt – eine basische Substanz, die den pH-Wert im ansonsten sauren Milieu des Magens lokal in die Höhe treibt. Weil das gelartige Netzwerk aus einem bestimmten Typ von Mucinen, aus dem die Magenschleimhaut aufgebaut ist, oberhalb eines pH-Wertes von fünf zunehmend zusammenbricht, verflüssigt das Bakterium auf die Art die Schleimhaut in seiner direkten Umgebung und schwimmt durch sie hindurch.

Mit Urease beschichtet schwimmt ein Mikropropeller durch die Magenschleimhaut

Die Forscher in Stuttgart statteten ihren Mikropropeller mit derselben schleimlösenden Fähigkeit aus, indem sie ihn mit Urease beschichteten. Den derart präparierten Schwimmer testeten sie dann in Experimenten an der Magenschleimhaut von Schweinen, bei denen sie von Kollegen der Technischen Universität München unterstützt wurden. In einem harnstoffhaltigen Milieu manövrierten sie das Vehikel dabei mithilfe eines Magnetfeldes durch die Schleimhaut.

Allerdings mussten die Wissenschaftler noch zu einem weiteren Kniff greifen, weil zunächst Schleimhautbestandteile, die auf dem Propeller haften blieben, dessen Rotation behinderten. „Erst ein Zusatz von kleinsten Mengen Gallensäure sorgte für einen reibungslosen Vortrieb“, erklärt Debora Walker, die am Stuttgarter Max-Planck-Institut für Intelligente Systeme in der Gruppe „Mikro-, Nano- und Molekulare Systeme“ forscht. Bei einem Einsatz ihres Mikrovehikels etwa in einem natürlichen menschlichen Magen wäre dies allerdings nicht nötig. „In der Magenflüssigkeit sind solche Salze natürlicher Weise in kleinen Mengen vorhanden“, so Debora Walker.

Inhalt des Artikels:

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 43782100 / Bio- & Pharmaanalytik)