Suchen

Gefangenes Wasser im All Wassereis mit Sternenstaub

| Autor / Redakteur: Sebastian Hollstein* / Dr. Ilka Ottleben

Astrophysiker der Uni Jena konnten in einer aktuellen Studie beweisen, dass Sternenstaub im All mit Eis vermischt ist.. Möglicherweise wirkt dieser Effekt sogar bei der Planetenbildung mit.

Firmen zum Thema

Wolken aus interstellarem Staub und Gas, hier in der Region „Cygnus-X“ im Sternbild Schwan.
Wolken aus interstellarem Staub und Gas, hier in der Region „Cygnus-X“ im Sternbild Schwan.
(Bild: ESA/PACS/SPIRE/Martin Hennemann & Frédérique Motte, Laboratoire AIM Paris-Saclay, CEA/Irfu – CNRS/INSU – Univ. Paris Diderot, France.)

Jena – Die Materie zwischen Sternen einer Galaxie – das sogenannte interstellare Medium – besteht neben Gas vor allem aus jeder Menge Staub. Sterne und Planeten haben ihren Anfang irgendwann einmal in einer solchen Umgebung genommen. Denn die Staubpartikel können verklumpen und zu Himmelskörpern zusammenwachsen. Außerdem finden auf ihnen wichtige chemische Prozesse statt, aus denen komplexe organische – möglicherweise sogar präbiotische – Moleküle hervorgehen.

Eine wichtige Voraussetzung für diese Vorgänge ist allerdings die Existenz von Wasser. Dieses kommt in besonders kalter kosmischer Umgebung in Form von Wassereis vor. Doch bisher war nicht klar, in welcher Verbindung Eis und Staub in diesen Regionen des Alls stehen. Ein Forschungsteam der Friedrich-Schiller-Universität Jena und des Max-Planck-Instituts für Astronomie hat nun bewiesen, dass die Staubpartikel und das Eis miteinander vermischt sind.

Physikalisch-chemische Prozesse im All besser modellieren

„Bisher wusste man nicht, ob Eis und Staub unverbunden nebeneinander schweben, ob eine Eisschicht die Staubpartikel umhüllt oder ob beide miteinander vermischt sind“, erklärt Dr. Alexey Potapov von der Universität Jena. „Wir haben die Spektren von laborproduzierten Silikaten, Wassereis und ihre Mischungen mit astronomischen Spektren von protostellaren Hüllen und protoplanetaren Scheiben verglichen. Dabei haben wir festgestellt, dass die Spektren nahezu deckungsgleich sind, wenn Silikatstaub und Wassereis in diesen Umgebungen miteinander vermischt sind.“

Aus diesen Informationen ziehen die AstrophysikerInnen wertvolle Informationen. „Wir müssen verschiedene physikalische Bedingungen in verschiedenen astronomischen Umgebungen verstehen, um physikalisch-chemische Prozesse im All besser modellieren zu können“, sagt Potapov. Außerdem könnten sie so beispielsweise die Menge des Materials besser abschätzen und genauere Aussagen zu den Temperaturen in verschiedenen Bereichen der interstellaren und zirkumstellaren Media treffen.

Gefangenes Wasser im Staub

Zudem konnten die WissenschaftlerInnen der Universität Jena durch Experimente und Vergleiche beobachten, was mit dem Wasser passiert, wenn die Temperaturen zunehmen und das Eis bei ca. 180 Kelvin (-93 Grad Celsius) verschwindet bzw. in die Gasphase übergeht und den Festkörper, mit dem es verbunden ist, verlässt. „Einige Wassermoleküle sind dabei so stark mit dem Silikat verbunden, dass sie auf der Oberfläche oder im Inneren des Staubpartikels bleiben“, sagt Alexey Potapov. „Wir vermuten, dass es dieses sogenannte ,trapped water' – also gefangenes Wasser – auch an den Staubpartikeln im All gibt. Das zumindest legt der Vergleich zwischen den aus den Laborversuchen hervorgegangenen Spektren mit denen im sogenannten diffusen interstellaren Medium des Weltalls nahe. Dabei erhielten wir deutliche Hinweise, dass dort eben jene gefangenen Wassermoleküle existieren.“

Die Existenz von solchem Festkörperwasser legt nahe, dass sich auch andere komplexe Moleküle auf den Staubpartikeln im diffusen interstellaren Medium befinden können. Wenn Wasser auf einem derartigen Teilchen vorhanden ist, dann ist beispielsweise der Weg zu komplexen organischen Molekülen nicht sehr weit. Denn die Staubpartikel bestehen meist unter anderem aus Kohlenstoff, der in Verbindung mit Wasser und unter Einfluss von Ultraviolettstrahlung, wie sie in der Umgebung herrscht, die Methanolbildung begünstigt. Die organische Verbindung habe man bereits in diesen Bereichen des interstellaren Mediums beobachtet – bisher wusste man allerdings nicht, woher sie stammt.

Die Präsenz des Festkörperwassers kann zudem Fragen zu einem anderen Element beantworten: Man kennt zwar die Menge an Sauerstoff im interstellaren Medium, hatte bisher allerdings keine Informationen darüber, wo genau sich etwa ein Drittel davon befindet. Die neuen Forschungsergebnisse deuten darauf hin, dass das Festkörperwasser in Silikaten ein verstecktes Sauerstoff-Reservoir ist.

Hilft Festkörperwasser bei der Planetenbildung?

Außerdem kann das „gefangene Wasser“ dabei helfen, überhaupt zu verstehen, wie der Staub wächst, da es das Zusammenkleben kleinerer Teilchen zu größeren Partikeln begünstigen könnte. Möglicherweise wirkt dieser Effekt sogar bei der Planetenbildung. „Sollte es gelingen nachzuweisen, dass „gefangenes Wasser“ in Bausteinen der Erde existierte – oder existieren konnte –, dann ergeben sich eventuell sogar neue Antworten auf die Frage, wie Wasser auf die Erde gelangte“, sagt Alexey Potapov. Doch das sind bisher nur Vermutungen, denen die Jenaer Forscherinnen und Forscher in Zukunft nachgehen wollen.

Originalpublikation: A. Potapov, J. Bouwman, C. Jäger, Th. Henning (2020): Dust/ice mixing in cold regions and solid-state water in the diffuse interstellar medium, Nature astronomy, DOI: https://doi.org/10.1038/s41550-020-01214-x

* S. Hollstein: Friedrich-Schiller-Universität Jena, 07743 Jena

(ID:46872184)