English China

Krankheitserreger dank maschinellem Lernen erkennen

Wie Computer Salmonellen aufspüren

Seite: 2/2

Anbieter zum Thema

Erreger schnell und zuverlässig einstufen

Seinen ersten Praxiseinsatz hat das maschinelle Lern-Tool bereits erfolgreich bestanden: Beim Vergleich neuer Salmonella-Stämme, die derzeit südlich der Sahara auftreten, hat die Software aus der Gesamtheit häufig auftretender Infektionstypen (Salmonella Enteritidis und Salmonella Typhimurium) gezielt zwei Varianten des Erregers hervorgehoben, die besonders gefährlich sind und eine höhere Anzahl von Blutbahn-Infektionen auslösen.

Diese Infektionen bedrohen vor allem Menschen mit einem geschwächten Immunsystem, wie es zum Beispiel HIV-Infizierte haben. Das maschinelle Lern-Tool zeigte deutlich die genetischen Veränderungen auf, die es diesen beiden Salmonella-Stämmen ermöglichen, sich an ihre Wirte anzupassen und damit invasiver zu werden, heißt es in einer Pressemeldung.

„Das maschinelle Lern-Tool ist ein bedeutender methodischer Fortschritt, da es nicht nur nach Genen und Mutationen sucht, sondern auch nach den funktionellen Auswirkungen, die diese Mutationen haben“, so Dr. Lars Barquist, vom Helmholtz-Institut für RNA-basierte Infektionsforschung in Würzburg. „Es kann damit vorhersagen, welche Mutationen es den Krankheitserregern ermöglichen, sich über den Darm hinaus zu verbreiten und damit lebensbedrohliche Krankheiten auszulösen. Das wird zukünftig dabei helfen, effektivere Behandlungsmethoden zu entwickeln.“

Antibiotikaresistenzen aufspüren und mehr

Auch wenn die ersten Praxistests nur mit Salmonellen durchgeführt wurden, ist das maschinelle Lern-Tool den Forschern zufolge nicht auf diese beschränkt, sondern vielfältig einsetzbar. Genauso könnte es zur Untersuchung anderer Faktoren, zum Beispiel entstehende Antibiotikaresistenzen bei verschiedensten Krankheitserregern, angewendet werden. Mit diesem Tool wollen die Wissenschaftler in Zukunft gefährliche Bakterienstämme in Echtzeit identifizieren und Krankheitsausbrüche verhindern.

„Wir nutzen diesen Ansatz bereits, um nach den wichtigsten Unterschieden zwischen asiatischen und afrikanischen Salmonella enterica (Serovar Typhi)-Stämmen zu suchen“, berichtet Dr. Nicholas Feasey von der Liverpool School of Tropical Medicine. „Anstatt die Genome verschiedener Bakterienstämme in wochen- und monatelanger Kleinarbeit manuell zu vergleichen, sind wir nun in der Lage, die genetischen Veränderungen neuer Krankheitserreger sofort zu bestimmen. Das bietet uns die Möglichkeit, Krankheitsausbrüche sozusagen live zu verfolgen und damit schnell gesundheitspolitische Maßnahmen zur Kontrolle und Prävention ergreifen zu können.“

Originalpublikation: Nicole E. Wheeler, Paul P. Gardner, Lars Barquist: Machine learning identifies signatures of host adaptation in the bacterial pathogen Salmonella enterica. PLOS Genetics 2018, DOI: 10.1371/journal.pgen.1007333

* S. Thiele, Helmholtz-Zentrum für Infektionsforschung, 38124 Braunschweig

(ID:45318104)