Wassersituation in Europa Dürremonitor mithilfe von „Tom und Jerry“
Über unseren Köpfen jagen sich zwei Satelliten in einem endlosen Rennen hinterher, ohne sich jemals zu überholen. Diese „Tom und Jerry“ genannten Zwillingssatelliten messen aus dem Orbit das Schwerefeld der Erde und helfen dabei, die Grundwasserreserven am Boden zu berechnen. So hat ein internationales Forscherteam die trockenen Sommermonate 2018 und 2019 ausgewertet und gezeigt, wie heftig bereits heute Dürren in Europa auftreten.

Europa fehlt Grundwasser, sogar sehr viel Grundwasser. Bereits seit 2018 leidet der Kontinent unter einer starken Dürre. Dies belegen Satellitendaten, die im Institut für Geodäsie der TU Graz ausgewertet werden.
Den Beginn dieser angespannten Situation belegt eine Publikation von Eva Boergens in Geophysical Research Letters aus dem Jahr 2020. Darin zeigte sie, dass es in den Sommermonaten 2018 und 2019 einen eklatanten Wassermangel in Zentraleuropa gab. Seit damals gab es keinen signifikanten Anstieg der Grundwasserspiegel, die Pegel sind konstant niedrig. Das zeigen Datenauswertungen von Torsten Mayer-Gürr und Andreas Kvas vom Institut für Geodäsie an der TU Graz. Sie beobachteten im EU-Projekt Global Gravity-based Groundwater Product (G3P) mittels Satellitengravimetrie die weltweiten Grundwasservorkommen und dokumentierten deren Veränderungen.
Dürren verstärken die Energiekrise
Die Folgen der langanhaltenden Dürre waren in Europa im Sommer 2022 evident. Trockene Flussbetten, stehende Gewässer, die zusehends verschwanden und damit einhergehend Schäden an Natur und der Wirtschaft. Nicht nur, dass zahlreiche Wasserlebewesen ihren Lebensraum verloren und trockene Böden der Landwirtschaft viele Probleme bereiteten, auch die Energieknappheit in Europa hat sich dadurch verschärft. In Frankreich fehlte das Kühlwasser für Atomkraftwerke, um genügend Strom erzeugen zu können und Wasserkraftwerke konnten ohne ausreichend Wasser ihre Funktion ebenfalls nicht erfüllen.
:quality(80)/images.vogel.de/vogelonline/bdb/1910300/1910323/original.jpg)
Temperatur und Niederschlagskarten der der Nordhalbkugel
Wo die Dürren der Zukunft drohen
Satelliten im Doppelpack
Wie können die Forscher an der TU Graz mit Daten aus dem Weltall genaue Aussagen über die Grundwasserspeicher tätigen? Kernstück des Projekts G3P ist ein Satellitenpaar, das in einer polaren Umlaufbahn in knapp 490 Kilometern Höhe die Erde umkreist. Wichtig ist der Abstand zwischen den Zwillingssatelliten von rund 200 Kilometern: Der hintere darf den vorderen nicht einholen, weswegen sie in Anlehnung an die Cartoon-Figuren auch die Bezeichnung Tom und Jerry erhalten haben.
:quality(80)/images.vogel.de/vogelonline/bdb/1596700/1596770/original.jpg)
Satelliten messen das Schwerefeld der Erde
Klimaforschung aus dem Erdorbit – Teil zwei
Die Distanz zwischen den Satelliten wird laufend genau gemessen. Fliegen sie über einen Berg, dann ist der vordere Satellit aufgrund der erhöhten Masse und damit Gravitationskraft unter ihm zunächst einmal schneller als der hintere. Hat er den Berg passiert, bremst er wieder leicht ab, dafür beschleunigt der hintere Satellit, sobald er den Berg erreicht. Sind beide jenseits des Berges, relativiert sich die Geschwindigkeit wieder. Diese Distanzänderungen über großen Massen sind die Hauptmessgrößen für die Bestimmung des Erdschwerefeldes und werden mikrometergenau bestimmt.
Monatliche Schwerekarte der Erde
Das alles geschieht bei einer Fluggeschwindigkeit von rund 30.000 km/h. So schaffen die beiden Satelliten 15 Erdumläufe am Tag, womit sie nach einem Monat eine komplette Abdeckung der Erdoberfläche erreichen. Das bedeutet wiederum, dass die TU Graz jeden Monat eine aktuelle Schwerekarte der Erde liefern kann. „Die Prozessierung und der Rechenaufwand sind hier ziemlich groß. Wir haben alle fünf Sekunden eine Abstandsmessung und damit etwa eine halbe Million Messungen pro Monat. Daraus bestimmen wir dann Schwerefeldkarten“, sagt der Grazer Forscher Mayer-Gürr.
Massenbilanz der Wasserquellen
Mit der Schwerekarte ist die Menge des Grundwassers allerdings noch nicht ermittelt. Denn die Satelliten zeigen alle Massenänderungen an und machen keinen Unterschied zwischen Meer, Seen oder Grundwasser. Dafür braucht es die Kooperation mit allen anderen Partnern des EU-Projekts G3P. Mayer-Gürr und sein Team liefern die Gesamtmasse, davon werden Massenänderungen in den Flüssen und den Seen abgezogen. Die Bodenfeuchte, der Schnee und das Eis wird ebenfalls subtrahiert und letztendlich bleibt das Grundwasser übrig.
Für jede dieser anderen Massen gibt es eigene Experten, die hier ihre Daten einbringen. Diese sitzen neben Österreich (TU Graz, TU Wien, Earth Observation Data Center EODC) in Deutschland (GeoForschungsZentrum GFZ in Potsdam), der Schweiz (Universität Bern, Universität Zürich), Frankreich (Collection Localisation Satellites CLS, Laboratoire d'Etudes en Géophysique et Océanographie Spatiales LEGOS, Magellium), Spanien (FutureWater), Finnland (Finnish Meteorological Institute) und in den Niederlanden (International Groundwater Resources Assessment Centre IGRAC).
Europa hat ein Wasserproblem
Das Ergebnis dieser Zusammenarbeit zeigt, dass die Wassersituation in Europa mittlerweile sehr prekär geworden ist. Mayer-Gürr hatte dies in so einem Ausmaß nicht erwartet. „Ich hätte mir vor ein paar Jahren nicht gedacht, dass Wasser hier in Europa einmal ein Problem sein könnte, vor allem in Deutschland oder Österreich. Wir kriegen hier tatsächlich Probleme mit der Wasserversorgung, da müssen wir uns Gedanken machen“, sagt er. Aus seiner Sicht ist es zunächst einmal notwendig, die sich fortsetzende Dürre auch mit Daten belegen zu können und fortlaufende Satellitenmission dazu im All zu haben.
Die europäische Weltraumagentur ESA und ihr US-Pendant Nasa werden diese Forschungen mit dem Projekt „Magic“ (Mass-change And Geoscience International Constellation) fortsetzen. Bei der Datenauswertung wird die TU Graz wieder mit an Bord sein. (clu)
Weitere Informationen zum Projekt G3P gibt es online auf der Projektseite
* Falko Schoklitsch, TU Graz, 8010 Graz/Österreich
(ID:49045512)