Anbieter zum Thema
Die Anordnung der Chitinfasern beeinflusst die Materialeigenschaften
In ihren Untersuchungen erkannten die Wissenschaftler, dass sich die Struktur des Materials in den Giftklauen der Wanderspinne Cupiennius salei von derjenigen anderer Skelettteile deutlich unterscheidet. Vor allem die Chitinfasern ordnen sich darin auf besondere Weise an. In einer speziellen Zone verlaufen die Fasern in verschiedenen Schichten vorwiegend in der Richtung, in der auch hohe mechanische Spannungen während des Bisses zu erwarten sind. Das verleiht der Giftklaue eine maßgeschneiderte mechanische Belastbarkeit. Denn die Chitinfasern sind parallel zu ihrer Längsachse immer steifer als senkrecht dazu. „Den höchsten Grad dieser gleichförmigen Ausrichtung haben wir im mittleren Bereich der Giftklaue gefunden“, erklärt Friedrich Barth.
Metallionen verstärken die Stabilität der Giftklauenspitze
Auch die Proteinstruktur in der Giftklaue ist für deren Zweck optimiert. Proteine zeichnen sich durch hohe chemische Variabilität aus und können entsprechend leicht verändert werden. Die Spinne nutzt auch dies für ihre Giftklauen aus, um sich bei der Jagd einen materialtechnischen Vorteil gegenüber ihrer Beute zu verschaffen. „Erstaunlicherweise bestehen die Zahnspitze und die äußeren Cuticulaschichten, die bei ihrem Biss der höchsten Belastung ausgesetzt sind, vorwiegend aus Proteinen“, sagt Friedrich Barth. Die Proteinzusammensetzung ändert sich von der Basis zur Spitze der Giftklaue, wobei die Konzentration der Aminosäure Histidin stark ansteigt. Histidin eignet sich besonders gut, um mit Metallionen die Proteine stark zu vernetzen. Da die Forscher auch Zink und Kalzium in der Proteinmatrix fanden, vermuten sie, dass benachbarte Fasern in der Proteinmatrix der Zahnspitze tatsächlich vernetzt werden. Das macht die Spitze besonders hart und fest. Zudem leitet das stabile Proteinnetz den Druck beim Durchbohren eines Beutepanzers effektiv an die Chitinfasern weiter.
Eigenschaft eingelagerter Chloridionen ist noch ungeklärt
Auch stellten die Forscher fest, dass neben den Metallionen auch Chloridionen in dem Proteinnetz eingelagert sind. „Interessanterweise sind Chloridionen anders verteilt als die Metallionen“, sagt Yael Politi. Welche Funktion die Chlorid-Ionen übernehmen, nach welchen Kriterien die Verteilung der eingelagerten Elemente ausgewählt wird und wie sich dies auf die mechanischen Eigenschaften der Giftklaue auswirkt, ist bisher jedoch noch unklar.
Doch schon jetzt steht fest: „Die Giftklauen der Spinnen besitzen eine hoch spezialisierte Materialstruktur. Die Materialeigenschaften ändern sich von der Basis zur Spitze in feinen Abstufungen, und die äußere Schicht der Klauen ist auffallend abriebfest“, wie Yael Politi resümiert. Die verschiedenen chemischen und strukturellen Veränderungen zu studieren, die dafür verantwortlich sind, dass sich die Materialeigenschaften des Cuticulapanzers auf so feine Weise an bestimmte biologische Funktionen anpassen, ist für die Forscher ein ausgesprochen lohnendes Ziel. Ihre Arbeit könnte durchaus auch von praktischem Nutzen sein. „Das Wissen, das wir dabei gewinnen, könnte zum Beispiel die Grundlage für die Entwicklung von Materialien für besondere Anwendungen oder von Injektionsnadeln mit speziellen Formen und Materialeigenschaften für Anwendungen in der Medizin legen“, so Politi.
Originalveröffentlichung: Yael Politi, Matthias Priewasser, Eckhard Pippel, Paul Zaslansky, Jürgen Hartmann, Stefan Siegel, Chenghao Li, Friedrich G. Barth, Peter Fratzl; A Spider's Fang: How to Design an Injection Needle Using Chitin-Based Composite Material; Advanced Functional Materials, 22. März 2012, DOI: 10.1002/adfm.201200063
(ID:33688640)

