English China

Erforschen von Molekülstruktur mit Kyroelektronenmikroskopie Das tödliche Rätsel der Schwarzen Witwe – so wirkt ihr Gift

Quelle: Pressemitteilung Universität Münster 2 min Lesedauer

Anbieter zum Thema

Mit seinen scharfen Spitzen durchbohrt ein Neurotoxin der tödlichen Spinne die Nervenzell-Membran. Mithilfe von Kryoelektronenmikroskopie, konnten Wissenschaftler der Universität Münster die komplexe Molekülstruktur aufschlüsseln und so diese Wirkweise simulieren.

Die Schwarze Witwe ist eine Kugelspinne, die ihre Beute mit Gift tötet. Auch für den Menschen ist das Gift nicht ungefährlich. Wie es wirkt, haben Forschende der Uni Münster nun entschlüsselt. (Symbolbild)(Bild:  frei lizenziert, Tom Sid  / Unsplash)
Die Schwarze Witwe ist eine Kugelspinne, die ihre Beute mit Gift tötet. Auch für den Menschen ist das Gift nicht ungefährlich. Wie es wirkt, haben Forschende der Uni Münster nun entschlüsselt. (Symbolbild)
(Bild: frei lizenziert, Tom Sid / Unsplash)

Die Schwarze Witwe gehört zu den gefürchteten Spinnenarten. Ihr Gift ist ein Cocktail aus sieben verschiedenen Toxinen, die das Nervensystem angreifen. Diese so genannten Latrotoxine lähmen gezielt Insekten und Krebstiere, allerdings zielt eines von ihnen, das α-Latrotoxin, auf Wirbeltiere ab und ist auch für den Menschen giftig. Es greift in die Signalübertragung des Nervensystems ein.

Toxische Freisetzung von Neurotransmittern

Sobald α-Latrotoxin an spezifische Rezeptoren der Synapsen bindet – die Kontakte zwischen Nervenzellen oder zwischen Nervenzellen und Muskeln –, strömen Kalzium-Ionen unkontrolliert in die präsynaptischen Membranen der signalübermittelnden Zellen. Dies verursacht eine dauerhafte Freisetzung von Neurotransmittern, was starke Muskelkontraktionen und Krämpfe auslöst. Trotz der scheinbaren Einfachheit dieses Vorgangs verbirgt sich dahinter ein hochkomplexer Mechanismus. Wissenschaftler von der Universität Münster haben nun die Struktur des α-Latrotoxins vor und nach der Einlagerung in die Membran in nahezu atomarer Auflösung entschlüsselt.

Wenn das Toxin an den Rezeptor der präsynaptischen Membran der signalübermittelnden Zelle bindet, durchläuft es eine Umwandlung: Ein Teil des Moleküls formt sich zu einem Stiel, der in die Zellmembran eindringt („Membran-Insertion“, rechts). Als eine Besonderheit bildet dieser Stiel in der Membran eine kleine Pore, die als Kalzium-Kanal fungiert. MD-Simulationen legten offen, dass Kalzium-Ionen (Ca2+-Ionen) durch einen seitlich gelegenen selektiven Eingang direkt oberhalb der Pore in die Zelle strömen(Bild:  Uni MS - AG Gatsogiannis)
Wenn das Toxin an den Rezeptor der präsynaptischen Membran der signalübermittelnden Zelle bindet, durchläuft es eine Umwandlung: Ein Teil des Moleküls formt sich zu einem Stiel, der in die Zellmembran eindringt („Membran-Insertion“, rechts). Als eine Besonderheit bildet dieser Stiel in der Membran eine kleine Pore, die als Kalzium-Kanal fungiert. MD-Simulationen legten offen, dass Kalzium-Ionen (Ca2+-Ionen) durch einen seitlich gelegenen selektiven Eingang direkt oberhalb der Pore in die Zelle strömen
(Bild: Uni MS - AG Gatsogiannis)

Die Spitzen des Giftes durchbohren die Membran

Um den Mechanismus des Kalzium-Einstroms in die präsynaptische Membran besser zu verstehen, haben Experten des Centers für Soft Nanoscience der Universität Münster unter der Leitung von Prof. Dr. Christos Gatsogiannis (Institut für Medizinische Physik und Biophysik) und Prof. Dr. Andreas Heuer (Institut für Physikalische Chemie) zusammengearbeitet. Sie setzten Hochleistungs-Kryo-Elektronenmikroskopie (Kryo-EM) und Molekulardynamik- (MD-) Computersimulationen ein. Sie zeigten: Beim Binden an den Rezeptor durchläuft das Toxin eine bemerkenswerte Umwandlung. Ein Teil des giftigen Moleküls formt sich zu einem Stiel, der wie eine Spritze in die Zellmembran eindringt. Als eine Besonderheit bildet dieser Stiel in der Membran eine kleine Pore, die als Kalzium-Kanal fungiert. MD-Simulationen legten offen, dass Kalzium-Ionen durch einen seitlich gelegenen selektiven Eingang direkt oberhalb der Pore in die Zelle strömen können.

Einzigartiges Gift mit biotechnologischem Potenzial

Dank dieser Ergebnisse lässt sich nun den Wirkmechanismus von α-Latrotoxin verstehen. „Das Toxin ahmt auf hochkomplexe Weise die Funktion natürlicher Calcium-Kanäle der präsynaptischen Membran nach“, erklärt Studienleiter Gatsogiannis. „Es unterscheidet sich damit in jeder Hinsicht von allen bislang bekannten Toxinen.“ Die neuen Erkenntnisse eröffneten vielfältige Anwendungsmöglichkeiten: Latrotoxine hätten ein erhebliches biotechnologisches Potenzial, darunter die Entwicklung verbesserter Gegengifte, Behandlungen für Lähmungen sowie neue Biopestizide.

Die Forschungsergebnisse sind aktuell in der Fachzeitschrift Nature Communications veröffentlicht. In vorangegangenen Arbeiten hatte die Forschungsgruppe um Gatsogiannis bereits die Struktur von insektenspezifischen Latrotoxinen im Gift der Schwarzen Witwe vor der Einlagerung in die Membran entschlüsselt.

Die Deutschen Forschungsgemeinschaft (DFG) unterstützte die Arbeit im Rahmen des Sonderforschungsbereichs 1348 „Dynamische zelluläre Grenzflächen“ finanziell.

Prof. Dr. Christos Gatsogiannis (links) und Prof. Dr. Andreas Heuer haben die Studie geleitet. (Bild:  Uni MS - Elisa Schulze-Averbeck)
Prof. Dr. Christos Gatsogiannis (links) und Prof. Dr. Andreas Heuer haben die Studie geleitet.
(Bild: Uni MS - Elisa Schulze-Averbeck)

Originalpublikation: BU Klink, A Alavizargar, KK Subramaniam, M Chen, A Heuer, C Gatsogiannis (2024): Structural basis of α-latrotoxin transition to a cation selective pore.Nature Communications 15, 8551; DOI: 10.1038/s41467-024-52635-5

(ID:50213677)

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung