English China

Detektor mit Attosekunden-Genauigkeit

Scharfe Bilder von chemischen Reaktionen

Seite: 2/2

Anbieter zum Thema

In seinem Experiment benutzte das Forscherteam Röntgenblitze der Linac Coherent Light Source in Menlo Park (USA). In der Probenkammer schlagen sie aus Neon-Atomen Elektronen heraus. Treffen diese nun auf einen Infrarot-Lichtimpuls, so werden sie von dessen elektrischem Feld beschleunigt oder abgebremst, je nachdem welche Feldstärke der Lichtpuls gerade hat, wenn das Elektron erzeugt wird.

Die zirkulare Polarisierung des Infrarotpulses gibt dem Elektron nun zusätzlich noch eine Richtung. Mit einem Ring aus 16 Detektoren sind daher Energie und Dauer des ursprünglichen Röntgenpulses wie auf dem Zifferblatt einer Uhr mit Attosekundengenauigkeit bestimmbar.

Die Information sowohl über die Energieverteilung als auch über die zeitliche Pulsstruktur soll es künftig erlauben, ganz spezifisch einzelne Reaktionsstellen in komplizierteren Molekülen anzusprechen und deren Einfluss auf den Verlauf der Veränderungen während der Reaktion in Echtzeit zu verfolgen.

Relevanz für die Weiterentwicklung von Freie-Elektronen-Lasern

„Diese Technik kann nun auch dazu verwendet werden, die Entwicklung der FELs selbst voranzutreiben“, sagt Dr. Wolfram Helml, Leiter des Forschungsteams. „Wir erhalten eine sofortige Rückmeldung über die Pulsstruktur während der FEL durchgestimmt wird. So können wir gezielt Röntgenblitze mit ganz bestimmter Dauer oder energetischen Eigenschaften erzeugen.“

Von besonderem Interesse sei die neue Technik auch für Forschungsarbeiten am neuen European X-ray Free-Electron Laser (Eu-XFEL) in Hamburg, sagen die Münchener Wissenschaftler. Denn im Unterschied zu anderen Techniken kann die Methode aus München auch für Messungen mit der hohen Wiederholrate genutzt werden, wie sie hochmoderne Anlagen wie der Eu-XFEL zur Verfügung stellen.

Auch im Rahmen des gerade im Aufbau befindlichen Centre for Advanced Laser Applications in Garching bei München, wo mithilfe laserbasierter Röntgentechnik Methoden zur Früherkennung und Therapie chronischer Krankheiten entwickelt werden sollen, könnte diese Technologie eingesetzt werden.

Originalpublikation: N. Hartmann, G. Hartmann, R. Heider, M. S. Wagner, M. Ilchen, J. Buck, A. O. Lindahl, C. Benko, J. Grünert, J. Krzywinski, J. Liu, A. A. Lutman, A. Marinelli, T. Maxwell, A. A. Miahnahri, S. P. Moeller, M. Planas, J. Robinson, A. K. Kazansky, N. M. Kabachnik, J. Viefhaus, T. Feurer, R. Kienberger, R. N. Coffee and W. Helml: Attosecond time–energy structure of X-ray free-electron laser pulses. Nature Photonics volume 12, pages 215–220 (2018), DOI: 10.1038/s41566-018-0107-6

* Dr. A. Battenberg, Technische Universität München, 85748 Garching

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung.

Aufklappen für Details zu Ihrer Einwilligung

(ID:45376553)