Überschall können wir alle leicht bei uns zu Hause erzeugen – mit einer Sektflasche. Wenn der Korken knallt, erreicht das entweichende Gas bis zu 1,5-fachen Schallgeschwindigkeit. Dies geht aus neuen Modellrechnungen hervor, die Forscher der TU Wien durchgeführt haben. Die Berechnung dient auch als Modell für andere Projektile oder Flugkörper wie Raketen.
Was passiert, wenn man eine Sektflasche öffnet? Forscher der TU Wien haben das im Modell untersucht.
(Bild: TU Wien)
Es klingt nach einem simplen Alltagsphänomen: Das Sektkorkenknallen. In der Flasche herrscht hoher Druck, der Korken wird vom darin komprimierten Gas nach außen getrieben und fliegt mit einem kräftigen „Plopp“ davon. Doch die Physik dahinter ist kompliziert.
Experimente mit Hochgeschwindigkeits-Kameras gab es bereits, doch eine mathematisch-numerische Analyse fehlte bisher. Diese Lücke wurde nun am Institut für Strömungsmechanik und Wärmeübertragung der TU Wien in Kooperation mit dem privaten Österreichischen Kompetenzzentrum für Tribologie (AC2T) geschlossen: Mit Computersimulationen gelang es, das Verhalten von Korken und Gasströmung nachzurechnen. Dabei stießen die Wissenschaftler auf erstaunliche Phänomene: Eine Überschall-Stoßwelle bildet sich aus, mehr als die eineinhalbfache Schallgeschwindigkeit kann der Gasstrom dabei erreichen. Die Ergebnisse sind auch für andere Anwendungen wichtig, bei denen es um Gasströmungen um ballistische Flugkörper bzw. Projektile oder Raketen geht.
Dass es beim Korken knallen zum Überschall kommt, mag verwundern. „Der Sektkorken selbst fliegt mit einer vergleichsweise geringen Geschwindigkeit davon, er erreicht vielleicht 20 Meter pro Sekunde“, sagt Lukas Wagner, der Erstautor der Studie, der als Doktorand an der TU Wien sowie auch am AC2T forscht. „Das Gas, das dabei aus der Flasche herausströmt, ist aber viel schneller. Es überholt den Korken, strömt an ihm vorbei und erreicht Geschwindigkeiten von bis zu 400 Metern pro Sekunde.“ Das ist schneller als die Schallgeschwindigkeit (343 m/s, unter Standardbedingungen).
Der Gasstrahl durchbricht also kurz nach dem Öffnen der Flasche die Schallmauer – und das geht mit einer Stoßwelle einher. Normalerweise ändern sich Größen wie Druck und Temperatur in einem Gas kontinuierlich: Zwei Punkte, die sich nahe aneinander befinden, haben auch ungefähr den gleichen Luftdruck. Wenn aber eine Stoßwelle entsteht, ist das anders. „Dann kommt es zu Sprüngen in diesen Größen, zu so genannten Unstetigkeiten“, sagt Dr. Bernhard Scheichl (TU Wien & AC2T), der Dissertationsbetreuer von Wagner. „Dann haben Druck oder Geschwindigkeit vor der Stoßwellenfront einen ganz anderen Wert als knapp dahinter.“
Diese Stelle im Gasstrahl, an der sich der Druck abrupt verändert, wird auch als „Mach-Scheibe“ bezeichnet. „Ähnliche Phänomene kennt man auch von Überschallflugzeugen oder Raketen, bei denen der Abgasstrahl mit hoher Geschwindigkeit aus den Triebwerken austritt“, erklärt Prof. Stefan Braun (TU Wien), von dem die ursprüngliche Idee für das Projekt stammt und der die Diplomarbeit von Wagner betreute. Die Mach-Scheibe bildet sich zunächst zwischen Flasche und Kork und bewegt sich dann zurück, in Richtung Flaschenöffnung.
Kurze Kälteexplosion
Nicht nur der Gasdruck, sondern auch die Temperatur ändert sich dabei schlagartig: „Wenn Gas expandiert, dann wird es kühler, das kennt man von Sprühdosen“, erklärt Erstautor Wagner. Bei der Sektflasche ist dieser Effekt sehr stark ausgeprägt: Punktuell kann das Gas auf bis zu -130° C abkühlen. Dabei kann es sogar passieren, dass aus dem CO2, das den Sekt perlen lässt, winzige Trockeneis-Kristalle entstehen.
„Dieser Effekt hängt davon ab, welche Temperatur der Sekt ursprünglich hatte“, sagt Wagner. „Unterschiedliche Temperaturen führen zu unterschiedlich großen Trockeneis-Kristallen, die dann Licht auf unterschiedliche Weise streuen. Dadurch entsteht unterschiedlich gefärbter Rauch. Im Prinzip kann man also an dieser Farbe die Sekttemperatur ablesen.“
Was den Korken knallen lässt
„Dass es beim Ploppen einer Sektflasche tatsächlich zu Überschallphänomenen kommt, war zunächst alles andere als klar, das würde man nicht unbedingt erwarten“, sagt Dissertationsbetreuer Scheichl. „Aber unsere Simulationen zeigen, dass sich das auf natürliche Weise aus den Gleichungen der Strömungsmechanik ergibt, und unsere Ergebnisse stimmen mit den Experimenten sehr gut überein.“
Der hörbare Knall beim Öffnen der Flasche ist eine Kombination aus unterschiedlichen Effekten: Erstens dehnt sich der Kork abrupt aus, sobald er die Flasche verlassen hat und erzeugt dadurch eine Druckwelle, und zweitens hört man die Stoßwelle, erzeugt durch den überschallschnellen Gasstrahl – ähnlich dem bekannten aeroakustischen Phänomen des Überschnallknalles. Beides gemeinsam ist für den charakteristischen Klang des Sektkorken-Ploppens verantwortlich. Die Ausdehnung des Korkens wurde auf Basis der Experimente modelliert, die Wagner bei AC2T durchführte.
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.
Die Ausbreitung des Gases beim Korkenknallen zeigt diese Simulation:
Modell für Pistolenkugeln bis zu Raketen
Die Methoden, die nun entwickelt wurden, um die Rätsel rund um die Physik des Sektkorken-Knallens zu lösen, lassen sich auch auf andere verwandte Bereiche anwenden: Vom Abfeuern einer Pistolenkugel bis zum Start einer Rakete – in vielen technisch wichtigen Situationen hat man es mit sehr festen Strömungskörpern zu tun, die in starker Wechselwirkung mit einem viel schnelleren Gasstrom stehen.