Eine Schwierigkeit der Photokatalyse ist es, die entstehenden positiven und negativen Ladungen am Katalysator lange genug voneinander zu separieren. Nun haben Forscher es erstmals geschafft, alle Reaktionsschritte an einem Halbleiter-Partikel ablaufen zu lassen. Das neue Nano-Katalysatorsystem stellt somit einen vielversprechenden Ansatz für die Speicherung erneuerbarer Energien dar.
Das neue Katalysatorsystem funktioniert wie ein Multifunktionswerkzeug, das die Bindungen im Wassermolekül trennt.
(Bild: C. Hohmann, Nanosystems Initiative Munich NIM)
München, Würzburg – In Anbetracht des globalen Klimawandels ist es erstrebenswert, erneuerbare klimaneutrale Energiequellen zu nutzen und zu speichern. Ein vielversprechender Ansatz ist die Photokatalyse: Dabei wird Wasser mit Hilfe von Sonnenlicht in Sauerstoff und den Energieträger Wasserstoff aufgespalten. Die effiziente Umsetzung dieses Verfahrens ist allerdings technisch sehr anspruchsvoll, da verschiedene Prozesse beteiligt sind, die sich gegenseitig beeinträchtigen.
Physikern der Ludwig-Maximilians-Universität München (LMU) um Dr. Jacek Stolarczyk und Professor Jochen Feldmann ist es in Kooperation mit Chemikern der Julius-Maximilians-Universität Würzburg (JMU) um Professor Frank Würthner nun erstmals gelungen, Wasser in einem einzigen System mithilfe von sichtbarem Licht vollständig zu spalten.
Künstliche Photosynthese an Nanopartikeln
Bei der photokatalytischen Wasserspaltung werden mittels synthetischer Komponenten die komplexen Prozesse nachgebildet, die bei der natürlichen Photosynthese ablaufen. Als Photokatalysator dienen dabei Halbleiter-Nanopartikel, die Lichtquanten (Photonen) absorbieren und mit dieser Energie die Bindungen in Wassermolekülen aufbrechen können.
Im Einzelnen läuft die Reaktion wie folgt ab: Ein Photon regt im Halbleiter eine negative Ladung (ein Elektron) und eine positive Ladung (ein so genanntes „Loch“) an. Beide müssen sich räumlich trennen, damit das Wasser vom Elektron zu Wasserstoff reduziert beziehungsweise das Loch zu Sauerstoff oxidiert werden kann. „Wenn man nur Wasserstoff aus Wasser herstellen will, werden die Löcher meistens schnell mittels chemischer Reagenzien entfernt“, sagt Stolarczyk. „Für eine vollständige Wasserspaltung müssen die Löcher aber bleiben und den langsamen Wasseroxidationsprozess vorantreiben.“
Die Schwierigkeit besteht dann darin, beide Halbreaktionen so auf einem Partikel zu kombinieren, dass sie gleichzeitig ablaufen – und zwar ohne, dass die dabei entstehenden entgegengesetzten Ladungen rekombinieren. Zudem werden die meisten Halbleiter durch die positiven Ladungen angegriffen und zerstört.
Stand vom 15.04.2021
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://support.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.