Suchen

Proteinanalyse um Vielfaches beschleunigt

Erstmals intaktes Virus atomgenau per Röntgenlaser entschlüsselt

Seite: 2/2

Firmen zum Thema

Die Forscher testeten ihre Methode mit zwei unterschiedlichen Viren am Röntgenlaser LCLS des US-Forschungszentrums SLAC, der 120 Röntgenblitze pro Sekunde liefert. Sie beluden ihren Probenhalter mit einer kleinen Menge an Mikrokristallen des Bovinen Enterovirus 2 (BEV2), welches Fehl- und Totgeburten sowie Unfruchtbarkeit bei Rindern auslösen kann und schwer zu kristallisieren ist. Bei der Untersuchung erzielten die Wissenschaftler eine Trefferquote von bis zu neun Prozent. In nur 14 Minuten sammelten sie so genug Daten, um die – bereits aus Untersuchungen an konventionellen Röntgenlichtquellen bekannte – Struktur des Virus mit einer Detailgenauigkeit von 0,23 Nanometern (millionstel Millimetern) zu bestimmen.

Kristalle mit zehn Mal weniger Gesamtvolumen

„Unseres Wissens ist dies die erste atomgenaue Struktur eines intakten Viruspartikels, die an einem Röntgenlaser bestimmt werden konnte“, betont Meents. „Während frühere Untersuchungen an anderen Röntgenlichtquellen Kristalle mit einem Gesamtvolumen von 3,5 Nanolitern benötigt haben, sind wir mit sehr viel kleineren Kristallen mit einem Gesamtvolumen von 228 Pikolitern ausgekommen. Das ist über zehn Mal weniger.“

Die Untersuchung der Virus-Kristalle erfolgte dabei bei Raumtemperatur. Eine Tiefkühlung, welche in der Röntgenkristallographie normalerweise eingesetzt wird, um Strahlenschäden an den Proteinkristallen zu verringern, ist für die hochempfindlichen Kristalle von Viren oft nicht möglich. Kristalle, die aus einzelnen Virusproteinen bestehen, sind hingegen robuster und können sich gut kühlen lassen. In einem zweiten Test untersuchte das Forscherteam um Meents daher das Virus-Protein Polyhedrin, welches als Grundbaustein für einen porösen Container dient, in dem sich bis zu mehrere Tausend Viruspartikel verschanzen können. Die Viren nutzen diese Container als Schutz vor externen Umwelteinflüssen und sind somit in der Lage, auch bei widrigsten Bedingungen über längere Zeit intakt zu bleiben.

Bildergalerie

Die Wissenschaftler beluden ihren Chip mit Polyhedrin-Kristallen und untersuchten sie mit dem Röntgenlaser während der Chip bei Temperaturen unter minus 180 Grad Celsius gehalten wurde. Bei dieser Untersuchung erreichten die Forscher eine Trefferquote von bis zu 90 Prozent. In nur zehn Minuten hatten sie mehr als genug Streubilder des Polyhedrins aufgezeichnet, um die Proteinstruktur auf 0,24 Nanometer genau bestimmen zu können. „Für die Polyhedrin-Struktur haben wir nur einen einzigen Chip abscannen müssen, der mit vier Mikrogramm Proteinkristallen beladen war. Das ist Größenordnungen unter der üblicherweise benötigten Menge“, erläutert Meents.

Erhöhung der Chip-Kapazität geplant

„Unser Ansatz reduziert nicht nur den Bedarf an Messzeit und Probenmenge drastisch, er eröffnet auch die Möglichkeit, Viren mit Röntgenlasern zu analysieren“, fasst Meents zusammen. In einem nächsten Schritt planen die Wissenschaftler, die Kapazität ihres Chips von 22.500 auf rund 200.000 Mikroporen fast zu verzehnfachen und die Scangeschwindigkeit auf bis zu tausend Proben pro Sekunde weiter zu erhöhen. Dies würde es erlauben, die Möglichkeiten des europäischen Röntgenlasers European XFEL besser zu nutzen, der zurzeit in der Region Hamburg in Betrieb geht und bis zu 27.000 Röntgenblitze pro Sekunde erzeugen soll. Außerdem soll bei der nächsten Generation des Chips jeweils nur diejenige Mikropore freiliegen, die gerade untersucht wird, um die übrigen Kristalle vor Schäden durch Streustrahlung des Röntgenlasers zu schützen.

An der Untersuchung waren auch Forscher der Universität Oxford, der Universität von Ostfinnland, des schweizerischen Paul-Scherrer-Instituts, des Lawrence Berkeley National Laboratorys und von SLAC in den USA beteiligt. Forscher der Diamond Light Source haben bei dieser Entwicklung eng mit DESY-Wissenschaftlern zusammengearbeitet, wesentliche Teile der Entwicklung und Tests des mikrostrukturierten Chips haben an den Messstationen I02 und I24 bei Diamond stattgefunden.

Originalpublikation: Philip Roedig, Helen M. Ginn, Tim Pakendorf, Geoff Sutton, Karl Harlos, Thomas S. Walter, Jan Meyer, Pontus Fischer, Ramona Duman, Ismo Vartiainen, Bernd Reime, Martin Warmer, Aaron S. Brewster, Iris D. Young, Tara Michels-Clark, Nicholas K. Sauter, Abhay Kotecha, James Kelly, David J. Rowlands, Marcin Sikorsky, Silke Nelson, Daniel S. Damiani, Roberto Alonso-Mori, Jingshan Ren, Elizabeth E. Fry, Christian David, David I. Stuart, Armin Wagner & Alke Meents: High-speed fixed-target serial virus crystallography ; Nature Methods, 2017; DOI: 10.1038/nmeth.4335

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de (ID: 44746443)