Anbieter zum Thema
Literatur
- [1] Tuberkulose als Berufskrankheit: ein Leitfaden zur Begutachtung und Vorsorge. (Ecomed Medizin, 2012).
- [2] World Health Organization. Global Tuberculosis Report 2019. (World Health Organization, 2019).
- [3] Robert-Koch-Institut Bericht zur Epidemiologie der Tuberkulose in Deutschland für 2018. (2019) doi:10.25646/6195.
- [4] Velayati, A. A. et al. Totally drug-resistant tuberculosis strains: evidence of adaptation at the cellular level. Eur. Respir. J. 34, 1202–1203 (2009).
- [5] Klopper, M. et al. Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerging Infect. Dis. 19, 449–455 (2013).
- [6] Bloemberg, G. V. et al. Acquired Resistance to Bedaquiline and Delamanid in Therapy for Tuberculosis. N. Engl. J. Med. 373, 1986–1988 (2015).
- [7] Hoffmann, H., Hofmann-Thiel, S., Merker, M., Kohl, T. A. & Niemann, S. Reply: Call for Regular Susceptibility Testing of Bedaquiline and Delamanid. Am. J. Respir. Crit. Care Med. 194, 1171–1172 (2016).
- [8] Nguyen, L. & Pieters, J. Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development. Annu. Rev. Pharmacol. Toxicol. 49, 427–453 (2009).
- [9] Ramaswamy, S. & Musser, J. M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber. Lung Dis. 79, 3–29 (1998).
- [10] Niemann, S., Merker, M., Kohl, T. & Supply, P. Impact of Genetic Diversity on the Biology of Mycobacterium tuberculosis Complex Strains. Microbiology Spectrum 4, (2016).
- [11] Dheda, K. et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. The Lancet Respiratory Medicine 5, 291–360 (2017).
- [12] Kempker, R. R. et al. Acquired Drug Resistance in Mycobacterium tuberculosis and Poor Outcomes among Patients with Multidrug-Resistant Tuberculosis. Emerg Infect Dis 21, 992–1001 (2015).
- [13] van Rie, A. et al. Exogenous Reinfection as a Cause of Recurrent Tuberculosis after Curative Treatment. New England Journal of Medicine 341, 1174–1179 (1999).
- [14] Pardini, M. et al. Characteristics of drug-resistant tuberculosis in Abkhazia (Georgia), a high-prevalence area in Eastern Europe. Tuberculosis (Edinb) 89, 317–324 (2009).
- [15] Niemann, S. et al. Mycobacterium tuberculosis Beijing lineage favors the spread of multidrug-resistant tuberculosis in the Republic of Georgia. J. Clin. Microbiol. 48, 3544–3550 (2010).
- [16] Merker, M. et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet 47, 242–249 (2015).
- [17] Tagliani, E. et al. Use of a Whole Genome Sequencing-based approach for Mycobacterium tuberculosis surveillance in Europe in 2017–2019: an ECDC pilot study. European Respiratory Journal (2020) doi:10.1183/13993003.02272-2020.
- [18] Treatment of tuberculosis: guidelines. (World Health Organization, 2010).
- [19] World Health Organization. Companion Handbook to the WHO Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis. (World Health Organization, 2014).
- [20] Diel, R. Behandlungskosten für Tuberkulose und MDR-/XDR-Tuberkulose in Deutschland. (2014).
- [21] Stop TB Partnership. The global plan to stopTB, 2006-2015. (2006).
- [22] Starzacher, A. K., Otto-Knapp, R., Bös, L. & Bauer, T. Tuberkulose: Diagnostik und Therapie. Journal MED (2014).
- [23] Smith, I. Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clin. Microbiol. Rev. 16, 463–496 (2003).
- [24] Horne, D. J. et al. Diagnostic Accuracy and Reproducibility of WHO-Endorsed Phenotypic Drug Susceptibility Testing Methods for First-Line and Second-Line Antituberculosis Drugs. J Clin Microbiol 51, 393–401 (2013).
- [25] Brown, A. C. et al. Rapid Whole-Genome Sequencing of Mycobacterium tuberculosis Isolates Directly from Clinical Samples. J. Clin. Microbiol. 53, 2230–2237 (2015).
- [26] Kohl, T. A. et al. Whole-genome-based Mycobacterium tuberculosis surveillance: a standardized, portable, and expandable approach. J. Clin. Microbiol. 52, 2479–2486 (2014).
- [27] Coll, F. et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Medicine 7, 51 (2015).
- [28] Feuerriegel, S. et al. Rapid genomic first- and second-line drug resistance prediction from clinical Mycobacterium tuberculosis specimens using Deeplex®-MycTB. Eur Respir J 2001796 (2020) doi:10.1183/13993003.01796-2020.
* Dr. V. Dreyer, Dr. T. A. Kohl, Dr. C. Utpatel, Dr. M. Merker, Prof. Dr. S. Niemann, Forschungszentrum Borstel, 23845 Borstel
(ID:46700570)