English China

Tuberkulose wird widerstandsfähiger

Extreme Antibiotikaresistenz

Seite: 2/2

Anbieter zum Thema

Literatur

  • [1] Tuberkulose als Berufskrankheit: ein Leitfaden zur Begutachtung und Vorsorge. (Ecomed Medizin, 2012).
  • [2] World Health Organization. Global Tuberculosis Report 2019. (World Health Organization, 2019).
  • [3] Robert-Koch-Institut Bericht zur Epidemiologie der Tuberkulose in Deutschland für 2018. (2019) doi:10.25646/6195.
  • [4] Velayati, A. A. et al. Totally drug-resistant tuberculosis strains: evidence of adaptation at the cellular level. Eur. Respir. J. 34, 1202–1203 (2009).
  • [5] Klopper, M. et al. Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerging Infect. Dis. 19, 449–455 (2013).
  • [6] Bloemberg, G. V. et al. Acquired Resistance to Bedaquiline and Delamanid in Therapy for Tuberculosis. N. Engl. J. Med. 373, 1986–1988 (2015).
  • [7] Hoffmann, H., Hofmann-Thiel, S., Merker, M., Kohl, T. A. & Niemann, S. Reply: Call for Regular Susceptibility Testing of Bedaquiline and Delamanid. Am. J. Respir. Crit. Care Med. 194, 1171–1172 (2016).
  • [8] Nguyen, L. & Pieters, J. Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development. Annu. Rev. Pharmacol. Toxicol. 49, 427–453 (2009).
  • [9] Ramaswamy, S. & Musser, J. M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber. Lung Dis. 79, 3–29 (1998).
  • [10] Niemann, S., Merker, M., Kohl, T. & Supply, P. Impact of Genetic Diversity on the Biology of Mycobacterium tuberculosis Complex Strains. Microbiology Spectrum 4, (2016).
  • [11] Dheda, K. et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. The Lancet Respiratory Medicine 5, 291–360 (2017).
  • [12] Kempker, R. R. et al. Acquired Drug Resistance in Mycobacterium tuberculosis and Poor Outcomes among Patients with Multidrug-Resistant Tuberculosis. Emerg Infect Dis 21, 992–1001 (2015).
  • [13] van Rie, A. et al. Exogenous Reinfection as a Cause of Recurrent Tuberculosis after Curative Treatment. New England Journal of Medicine 341, 1174–1179 (1999).
  • [14] Pardini, M. et al. Characteristics of drug-resistant tuberculosis in Abkhazia (Georgia), a high-prevalence area in Eastern Europe. Tuberculosis (Edinb) 89, 317–324 (2009).
  • [15] Niemann, S. et al. Mycobacterium tuberculosis Beijing lineage favors the spread of multidrug-resistant tuberculosis in the Republic of Georgia. J. Clin. Microbiol. 48, 3544–3550 (2010).
  • [16] Merker, M. et al. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage. Nat Genet 47, 242–249 (2015).
  • [17] Tagliani, E. et al. Use of a Whole Genome Sequencing-based approach for Mycobacterium tuberculosis surveillance in Europe in 2017–2019: an ECDC pilot study. European Respiratory Journal (2020) doi:10.1183/13993003.02272-2020.
  • [18] Treatment of tuberculosis: guidelines. (World Health Organization, 2010).
  • [19] World Health Organization. Companion Handbook to the WHO Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis. (World Health Organization, 2014).
  • [20] Diel, R. Behandlungskosten für Tuberkulose und MDR-/XDR-Tuberkulose in Deutschland. (2014).
  • [21] Stop TB Partnership. The global plan to stopTB, 2006-2015. (2006).
  • [22] Starzacher, A. K., Otto-Knapp, R., Bös, L. & Bauer, T. Tuberkulose: Diagnostik und Therapie. Journal MED (2014).
  • [23] Smith, I. Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clin. Microbiol. Rev. 16, 463–496 (2003).
  • [24] Horne, D. J. et al. Diagnostic Accuracy and Reproducibility of WHO-Endorsed Phenotypic Drug Susceptibility Testing Methods for First-Line and Second-Line Antituberculosis Drugs. J Clin Microbiol 51, 393–401 (2013).
  • [25] Brown, A. C. et al. Rapid Whole-Genome Sequencing of Mycobacterium tuberculosis Isolates Directly from Clinical Samples. J. Clin. Microbiol. 53, 2230–2237 (2015).
  • [26] Kohl, T. A. et al. Whole-genome-based Mycobacterium tuberculosis surveillance: a standardized, portable, and expandable approach. J. Clin. Microbiol. 52, 2479–2486 (2014).
  • [27] Coll, F. et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Medicine 7, 51 (2015).
  • [28] Feuerriegel, S. et al. Rapid genomic first- and second-line drug resistance prediction from clinical Mycobacterium tuberculosis specimens using Deeplex®-MycTB. Eur Respir J 2001796 (2020) doi:10.1183/13993003.01796-2020.

* Dr. V. Dreyer, Dr. T. A. Kohl, Dr. C. Utpatel, Dr. M. Merker, Prof. Dr. S. Niemann, Forschungszentrum Borstel, 23845 Borstel

(ID:46700570)

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung.

Aufklappen für Details zu Ihrer Einwilligung