In einem gemeinsamen Projekt der TU Wien und der Med Uni Wien wurde das weltweit erste 3D-gedruckte „Gehirn-Phantom“ entwickelt, das dem Aufbau von Gehirnfasern nachempfunden ist und mit einer speziellen Variante von Magnetresonanztomografie bildlich dargestellt werden kann. Mit Hilfe dieser Gehirnmodelle kann die Erforschung von neurodegenerativen Erkrankungen wie Alzheimer, Parkinson und Multiple Sklerose vorangetrieben werden.
Franziska Chalupa-Gantner mit Gehirn-Phantom in der Hand und Aleksandr Ovsianikov (beide Forschungsgruppe 3D Printing and Biofabrication, TU Wien).
(Bild: TU Wien)
Die Magnetresonanztomografie (MRT) ist ein weitverbreitetes Verfahren der bildgebenden Diagnostik, das v. a. für die Untersuchung des Gehirns verwendet wird. Mit der MRT können Aufbau und Funktion des Gehirns ohne Verwendung von ionisierender Strahlung untersucht werden. In einer speziellen Variante der MRT, der diffusionsgewichteten MRT (dMRT), kann darüber hinaus auch die Richtung der Nervenfasern im Gehirn bestimmt werden. Allerdings ist die korrekte Bestimmung der Nervenfaserrichtung an den Kreuzungspunkten von Nervenfaserbündeln sehr schwierig, da dort Überlagerungen von Nervenfasern mit unterschiedlichen Richtungen auftreten. Um das Verfahren weiter zu verbessern sowie Analyse- und Auswertungsmethoden zu testen, entwickelte ein internationales Team in Zusammenarbeit mit der TU Wien und der Medizinischen Universität Wien ein sogenanntes „Brain Phantom“ (Gehirn-Phantom) das mit einem hochauflösenden 3D-Druckverfahren hergestellt wurde.
Winziger Würfel mit Mikrokanälen
Dabei arbeiteten Forscher der Medizinischen Universität Wien als MRT-Experten und der TU Wien als 3D-Druck-Experten eng mit Kollegen der Universität Zürich und dem Universitätsklinikums Hamburg-Eppendorf zusammen. Bereits im Jahr 2017 wurde an der TU Wien ein Zwei-Photonen-Polymerisations-Drucker entwickelt, der einen hochskalierten Druck ermöglicht. Im Zuge dessen wurde gemeinsam mit der Medizinischen Universität Wien und der Universität Zürich auch an Gehirn-Phantomen als Anwendungsfall gearbeitet. Das daraus entstandene Patent bildet die Basis für das nun entwickelte Gehirn-Phantom und wird vom Forschungs- und Transfersupport der TU Wien betreut.
Das 3D-gedruckte „Gehirn-Phantom“
(Bild: Med Uni Wien)
Optisch hat dieses Phantom nicht viel mit einem echten Gehirn zu tun. Es ist viel kleiner und hat die Form eines Würfels. In seinem Inneren befinden sich feinste, mit Wasser befüllte Mikrokanäle in der Größenordnung einzelner Hirnnerven. Die Durchmesser dieser Kanäle sind fünfmal dünner als ein menschliches Haar. Um das feine Netzwerk der Nervenzellen im Gehirn nachzuahmen, griff das Forschungsteam um die Erstautoren Michael Woletz (Zentrum für Medizinische Physik und Biomedizinische Technik, Med Uni Wien) und Franziska Chalupa-Gantner (Forschungsgruppe 3D Printing and Biofabrication, TU Wien) auf eine dafür eher unübliche 3D-Druckmethode zurück: die Zwei-Photonen-Polymerisation. Diese hochauflösende Methode wird v. a. zum Druck von Mikrostrukturen im Nano- und Mikrometerbereich verwendet – nicht für den Druck dreidimensionaler Strukturen im Bereich von Kubikmillimetern.
Um Phantome in geeigneter Größe für die dMRT zu erstellen, beschäftigten sich die Forscher an der TU Wien damit, das 3D-Druckverfahren hochzuskalieren und den Druck von größeren Objekten mit hochaufgelösten Details zu ermöglichen. Durch den hochskalierten 3D-Druck erhalten die Forscher sehr gute Modelle, die – unter der dMRT betrachtet – verschiedene Nervenstrukturen zuordenbar machen. Woletz vergleicht diesen Ansatz, die Diagnosefähigkeiten von dMRT zu verbessern, mit der Funktionsweise einer Handykamera: „Den größten Fortschritt bei der Fotografie mit Handykameras sehen wir nicht unbedingt bei neuen, besseren Linsen, sondern bei der Software, die die aufgenommenen Bilder verbessert. Ähnlich ist es bei der dMRT: Mittels des neu entwickelten Gehirn-Phantoms können wir die Analysesoftware viel genauer justieren, damit die Qualität der gemessenen Daten verbessern und die Nervenarchitektur des Gehirns genauer rekonstruieren.“
Die authentische Nachbildung von charakteristischen Nervenstrukturen im Gehirn ist daher wichtig, um die Analysesoftware der dMRT „zu trainieren“. Die Verwendung von 3D-Druck erlaubt es vielfältige und komplexe Designs zu erstellen, die verändert und angepasst werden können. Die Gehirn-Phantome bilden so Bereiche im Gehirn ab, die besonders komplexe Signale erzeugen und daher schwierig zu analysieren sind, z. B. sich kreuzende Nervenbahnen. Um die Analysesoftware zu kalibrieren, untersucht man daher das Gehirn-Phantom mit dMRT und analysiert die gemessenen Daten wie bei einem echten Gehirn. Durch den 3D-Druck ist das Design der Phantome genau bekannt und die Ergebnisse der Analyse können überprüft werden. Dass dies funktioniert, konnten die TU Wien und die Med Uni Wien im Rahmen der gemeinsamen Forschungsarbeit zeigen. Mit Hilfe der entwickelten Phantome kann die dMRT verbessert werden, wovon die Planung von Operationen und die Erforschung von neurodegenerativen Erkrankungen wie Alzheimer, Parkinson und Multiple Sklerose profitieren können.
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.
Trotz des erfolgten Machbarkeitsbeweises steht das Team weiterhin vor Herausforderungen. Die größte Herausforderung stellt derzeit die Skalierung der Methode dar: „Die hohe Auslösung der zwei-Photon-Polymerisation ermöglicht den Druck von Details im Mikro- und Nanometerbereich und eignet sich daher sehr gut um Hirnnerven abzubilden. Gleichzeitig dauert es mit dieser Technik aber entsprechend lange, einen mehrere Kubikzentimeter großen Würfel zu drucken“, erklärt Chalupa-Gantner. „Daher zielen wir nicht nur darauf ab, noch komplexere Designs zu entwickeln, sondern auch den Druckprozess selbst weiter zu optimieren.“