Die Oberfläche von Katalysatoren ist entscheidend für die Reaktion. Welche komplexen Prozesse dort ablaufen, hat ein Team der TU Wien an Nanoteilchen untersucht. Es zeigte in Live-Aufnahmen, wie eine Reaktion in pulsierenden Rhythmen verläuft – und wann dieser Rhythmus aus dem Takt gerät.
Mikroskopaufnahme: Wie eine Welle schwappt die chemische Reaktion über den Nanopartikel.
(Bild: TU Wien)
Wien/Österreich – Die meisten Chemikalien, die industriell hergestellt werden, entstehen mithilfe von Katalysatoren. Meist bestehen diese Katalysatoren aus winzigen Metall-Nanoteilchen, die auf Trägeroberflächen festgehalten werden. Ähnlich wie ein geschliffener Diamant, dessen Oberfläche aus verschiedenen Facetten besteht, die in unterschiedliche Richtungen orientiert sind, kann auch ein katalytisches Nanoteilchen unterschiedliche Facetten haben – und diese Facetten können unterschiedliche chemische Eigenschaften aufweisen.
Diese Unterschiede blieben bisher in der Katalyseforschung oft unberücksichtigt, weil es sehr schwierig ist, gleichzeitig Information über die chemische Reaktion selbst und über die Geometrie der Oberfläche zu ermitteln. An der TU Wien ist das nun gelungen, indem Forscher verschiedene mikroskopische Verfahren kombinierten: Mithilfe von Feldelektronen- und Feldionenmikroskopie konnten sie die Oxidation von Wasserstoff auf einem einzelnen Rhodium-Nanoteilchen in Echtzeit nanometergenau abbilden. Dabei zeigten sich überraschende Effekte, die in Zukunft bei der Suche nach besseren Katalysatoren helfen könnten.
Der Rhythmus chemischer Reaktionen
„Bei bestimmten chemischen Reaktionen kann ein Katalysator zwischen einem aktiven und einem inaktiven Zustand hin und her wechseln“, sagt Prof. Günther Rupprechter vom Institut für Materialchemie der TU Wien. „Es kann zu chemischen Oszillationen zwischen den beiden Zuständen kommen, die sich selbst aufrechterhalten – dafür erhielt der Chemiker Gerhard Ertl im Jahr 2007 den Nobelpreis für Chemie.“
Das ist auch bei Rhodium-Nanoteilchen der Fall, die als Katalysator für die Wasserstoffoxidation eingesetzt werden – die Grundlage jeder Brennstoffzelle. Unter bestimmten Bedingungen können die Nanoteilchen während der Reaktion zwischen zwei Zuständen oszillieren: einem, in dem an der Oberfläche des Teilchens Sauerstoffmoleküle aufgespalten werden, und einem anderen, in dem Wasserstoff gebunden wird.
„Wenn man ein Rhodium-Teilchen einer Atmosphäre aus Sauerstoff und Wasserstoff aussetzt, werden zunächst die Sauerstoffmoleküle an der Rhodium-Oberfläche in einzelne Atome aufgespalten. Diese Sauerstoffatome können dann unter die oberste Rhodium-Schicht wandern und sich dort anlagern“, erklärt Prof. Yuri Suchorski, der Erstautor der Studie.
Durch die Wechselwirkung mit Wasserstoff können diese eingelagerten Sauerstoffatome dann wieder herausgeholt werden und sich mit Wasserstoff verbinden. Dann ist im Inneren des Rhodium-Partikels wieder Platz für weitere Sauerstoffatome und der Kreislauf beginnt von vorne. „Dieser Rückkopplungsmechanismus steuert die Frequenz der Oszillation“, sagt Suchorski.
Wenn die Synchronisation versagt
Bisher dachte man, dass diese chemischen Oszillationen immer auf dem gesamten Nanoteilchen synchron im gleichen Rhythmus stattfinden. Schließlich sind die chemischen Vorgänge auf den unterschiedlichen Facetten der Nanoteilchen-Oberfläche eng miteinander gekoppelt, weil die Wasserstoffatome von einer Facette zur benachbarten Facette wandern können.
Die Ergebnisse der Forschungsgruppe von Rupprechter und Suchorski zeigen allerdings, dass der Mechanismus viel komplexer ist: Unter bestimmten Bedingungen versagt die räumliche Kopplung und benachbarte Facetten oszillieren plötzlich mit deutlich unterschiedlichen Frequenzen – und in manchen Regionen des Nanopartikels dringen diese oszillierenden „chemischen Wellen“ überhaupt nicht vor.
Wellenbrecher im Nanoformat
(a) Moderne Katalysatoren bestehen aus Nanoteilchen; (b) Eine Rhodiumspitze als Modell eines Nanoteilchens; (c) Echtzeitverfolgung einer Reaktion mit einem Feldelektronenmikroskop; (d) Bei niedrigen Temperaturen oszillieren verschiedene Nanofacetten synchronisiert; (e) Bei höheren Temperaturen wird die räumliche Kopplung gebrochen: Desynchronisation
(Bild: TU Wien)
Was aber führt zum Entkoppeln der oszillierenden chemischen Wellen? „Das lässt sich auf atomarer Skala erklären“, sagt Suchorski. „Unter dem Einfluss von Sauerstoff können sich aus einer glatten Rhodium-Oberfläche hervorstehende Reihen von Atomen herausbilden.“ Diese Atomreihen können dann als eine Art „Wellenbrecher“ dafür sorgen, dass Wasserstoffatome nicht mehr so leicht von einer Facette zur anderen überwechseln können – die Facetten werden entkoppelt.
Wenn das der Fall ist, können die einzelnen Facetten unterschiedlich schnelle Oszillationen ausbilden. „Auf unterschiedlichen Facetten sind die Rhodium-Atome an der Oberfläche unterschiedlich angeordnet“, sagt Rupprechter. „Deshalb läuft auch die Einlagerung des Sauerstoffs ins Innere des Rhodium-Partikels unterschiedlich schnell ab, und so ergeben sich auf kristallographisch unterschiedlichen Facetten Oszillationen mit unterschiedlichen Frequenzen.“
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.
Videos pulsierender Katalysatoren
Der Schüssel zum Enträtseln dieses komplexen chemischen Verhaltens lag in der Verwendung einer feinen Rhodiumspitze als Modell für ein Nanoteilchen, wie man es typischerweise in der Katalyse verwendet. Ein elektrisches Feld wird angelegt, sodass Elektronen die Spitze aufgrund des quantenmechanischen Tunneleffekts verlassen können. Diese Elektronen werden im elektrischen Feld beschleunigt und treffen auf einen Bildschirm, wo dann ein Projektionsbild der Spitze mit einer Auflösung von rund zwei Nanometern entsteht.
Im Gegensatz zu Rastermikroskopien, bei denen die Oberfläche nach und nach abgetastet wird, entsteht so eine Aufnahme aller Oberflächenatome zur gleichen Zeit – anders wäre es nicht möglich, die Synchronisation und Desynchronisation der Oszillationen in Echtzeit abzubilden, wie in diesem Video:
Auf einer Rhodium-Oberfläche kommt es zu oszillierenden chemischen Reaktionen, die an der TU Wien unter dem Mikroskop beobachtet werden konnten. (Die Aufnahme wurde um einen Faktor 120 beschleunigt).
Die neuen Erkenntnisse über das Zusammenspiel einzelner Facetten eines Nanoteilchens können nun zu effektiveren Katalysatoren führen und ermöglichen neue Einblicke in Mechanismen der nicht-linearen Reaktionskinetik, Musterbildung und räumlichen Kopplung.