English China

Quantenphysik

Jupiters „Trojaner“ im Atom-Format

Seite: 2/2

Firmen zum Thema

Jupiters Trick - auf Atome angewandt

Im Gegensatz zu Planeten bewegen sich die Elektronen aber nicht dauerhaft so weiter: „Ohne zusätzliche Stabilisierung würde sich die Elektronen-Welle schon nach wenigen Umläufen wieder gleichmäßig entlang der Bahn verteilen und hätte keine feste Position mehr“, sagt Prof. Burgdörfer, Vorstand des Instituts für Theoretische Physik. Eine mögliche Stabilisierung solcher Bahnen kennt man aus der Astronomie schon lange: Jupiter, der schwerste Planet unseres Sonnensystems, stabilisiert durch seine Anziehungskraft die Bahnen der „Trojaner“ – das sind tausende kleine Asteroiden, die sich mit Jupiter eine Bahn um die Sonne teilen. Auf den so genannten „Lagrange-Punkten“ werden sie festgehalten, und entlang dieser Bahn bewegen sie sich mit Jupiter mit – genau mit der selben Umlaufgeschwindigkeit wie Jupiter selbst, sodass sie nie mit dem Planeten kollidieren.

Im Atom-Experiment wird diese stabilisierende Wirkung des Jupiters durch ein raffiniert gewähltes elektromagnetisches Feld ersetzt: Das Feld oszilliert genau in der Frequenz, die der Umlaufdauer des Elektrons um den Kern entspricht – es gibt dem Elektron also den richtigen Takt vor und hält die Quanten-Welle des Elektrons viele Umdrehungen lang in einem engen Bereich lokalisiert. Am Atom lassen sich sogar Manipulationen durchführen, die im Planetensystem nicht möglich wären: Das Elektron kann gezielt in eine andere Umlaufbahn überführt werden – so als würde man den Jupiter samt der Asteroiden auf die Saturn-Bahn schieben.

Bildergalerie

Das Kleine und das Große

Damit ist es gelungen, astronomische Gegebenheiten in einer quantenphysikalischen Miniatur-Version nachzubauen und Atome zu erzeugen, die dem historischen Bohrschen Atommodell erstaunlich nahe kommen. In Zukunft will das internationale Forschungsteam Atome präparieren, in denen sich gleich mehrere Elektronen auf planetenartigen Bahnen bewegen. Mit solchen Atomen soll es möglich sein, genauer zu erforschen, wie die Quanten-Welt der winzig kleinen Objekte mit der klassischen Welt unserer Alltagserfahrung zusammenhängt.

Originalpublikation:http://link.aps.org/doi/10.1103/PhysRevLett.108.043001

(ID:31502220)