Die Zutaten für klimaneutrales Fliegen Was kostet der klimaneutrale Flug 2050?
Anbieter zum Thema
Billigflüge sind längst dahin. Doch um im Flugsektor Klimaneutralität zu erreichen, muss es wohl noch teurer werden. Forscher des Paul-Scherrer-Instituts PSI und der ETH Zürich haben untersucht, welche Hebel wir für ein CO2-neutrales Fliegen haben und wie teuer ein „grüner“ Flug wird.

Die EU soll bis 2050 klimaneutral werden. Dies hat das EU-Parlament 2021 vorgegeben. Die Schweiz verfolgt dieses Ziel ebenfalls. Dazu soll der Flugsektor, der 3,5 Prozent der globalen Klimaerwärmung verursacht, seinen Teil beitragen – zumal der Ausstoß an klimarelevanten Gasen beim Fliegen pro Personen- oder Frachtkilometer zwei bis dreimal höher ist als in anderen Verkehrssektoren. Die internationale Zivilluftfahrtorganisation IACO und viele Airlines haben daher angekündigt, bis 2050 die CO2-Emissionen auf null zu reduzieren beziehungsweise Klimaneutralität anzustreben.
:quality(80)/p7i.vogel.de/wcms/bf/c3/bfc38fd72c284ce76d0ca6c04d33dee5/0106100313.jpeg)
Kraftstoff aus Biogas
Umweltfreundlich in den Süden fliegen – dank Essensresten
Projekt Klimaneutralität im Flugverkehr – wie ist das zu schaffen?
In einer neuen Studie haben Forschende des Paul-Scherrer-Instituts (PSI) und der ETH Zürich nun berechnet, ob und wie dies zu erreichen wäre. „Eine wichtige Frage dabei ist, was eigentlich genau mit null CO2 beziehungsweise Klimaneutralität gemeint ist“, sagt Romain Sacchi vom Labor für Energiesystemanalysen des PSI, einer der beiden Hauptautoren der Studie. Wenn nur die CO2-Emissionen des Fliegens selbst gemeint seien, so ergänzt seine Co-Autorin Viola Becattini von der ETH Zürich, greife das viel zu kurz. Denn unter der Annahme, dass der Flugverkehr weiterhin wächst wie bisher, machen die reinen CO2-Emissionen der Flüge laut den Berechnungen bis 2050 nur etwa 20 Prozent des gesamten Klimaeffekts aus. Um den gesamten Flugbetrieb klimaneutral zu bekommen, dürften neben dem Fliegen nämlich auch die Produktion des Treibstoffs und die gesamte Luftfahrt-Infrastruktur das Klima nicht weiter belasten.
Dies, so hat die Studie ergeben, ist durch die bislang verfolgten Maßnahmen zum Klimaschutz im Flugbetrieb bis 2050 allerdings nicht zu schaffen. „Neue Antriebe, klimaschonende Treibstoffe und das Herausfiltern von CO2 aus der Atmosphäre, um es unterirdisch zu speichern (Carbon Capture and Storage, kurz: CCS) werden uns allein nicht ans Ziel bringen“, sagt Marco Mazzotti, Professor für Verfahrenstechnik an der ETH. „Wir müssen zusätzlich den Flugverkehr reduzieren.“
Nicht-CO2-Effekte spielen eine große Rolle
Für ihre Studie haben PSI-Forscher Sacchi und seine Kollegin Becattini verschiedene Szenarien durchgespielt. Zum einen zeigte sich dabei, dass der Klimaeffekt durch die Infrastruktur, also den Bau der Flugzeuge sowie Bau und Betrieb der Flughäfen, zwar einkalkuliert werden muss, er jedoch insgesamt in der Zeit bis 2050 und darüber hinaus vergleichsweise gering ausfällt. Die Klimaeffekte des Fliegens selbst und der Emissionen durch Herstellung des Treibstoffes sind weitaus größer. Das war soweit nichts Neues.
Weniger klar war zuvor die wichtige Rolle so genannter Nicht-CO2-Effekte, die neben den reinen CO2-Emissionen auftreten: Der größere Teil des Treibhauseffekts beim Fliegen entsteht nämlich nicht durch den Kohlenstoff, der über die Kerosinverbrennung in die Atmosphäre gelangt, sondern durch ebenfalls frei werdende Rußpartikel und Stickoxide, die in der Luft zu Methan und Ozon reagieren, Wasserdampf und die Kondensstreifen, die zur Bildung von Zirruswolken in der oberen Atmosphäre führen. „Diese Faktoren werden bislang in vielen Analysen und „Net Zero“-Versprechen außer Acht gelassen; oder nicht korrekt berechnet“, sagt Hauptautor Sacchi.
Klimaeffekte bilanzieren
Üblich ist es, solche Emissionen und Effekte in CO2-Äquivalente umzurechnen, um sie in die Bilanz einzubeziehen. „Doch die bisher dazu verwendeten Methoden und Werte haben sich als unzutreffend erwiesen“, sagt ETH-Professor Mazzotti. „Wir sind deshalb präziser vorgegangen.“ Die dabei angewendeten Verfahren berücksichtigen vor allem einen wesentlichen Unterschied zwischen den verschiedenen Faktoren: Die Nicht-CO2-Effekte sind viel kurzlebiger als CO2, sie werden daher auch „Short Lived Climate Forcers“, kurz SLCF genannt – also „kurzlebige Klimatreiber“. Während von dem emittierten Kohlendioxid etwa die Hälfte von Wäldern und Ozeanen absorbiert wird, bleibt die andere Hälfte für Tausende von Jahren in der Luft, verteilt sich und wirkt als Treibhausgas. Methan dagegen ist viel klimawirksamer, baut sich aber binnen weniger Jahre ab. Kondensstreifen und daraus resultierende Wolken verflüchtigen sich gar in wenigen Stunden.
„Das Problem ist, dass wir durch den zunehmenden Flugverkehr ständig mehr SLCF produzieren, sodass sie sich summieren, anstatt schnell wieder zu verschwinden. Dadurch entfalten sie ihr gewaltiges Treibhauspotenzial dann doch über längere Zeiträume“, erklärt Becattini. Das sei wie in einer Badewanne, bei der sowohl der Abfluss als auch der Wasserhahn geöffnet ist: Solange der Wasserhahn mehr Wasser reinlässt, als durch den Abfluss entweichen kann, wird die Wanne immer voller – und irgendwann schwappt sie über.
„Dieses Bild zeigt uns allerdings auch: Wir haben mit dem Flugaufkommen den entscheidenden Hebel in der Hand“, betont Sacchi. „Indem wir weniger statt mehr fliegen, also quasi den Wasserhahn zu- statt aufdrehen, können wir die Atmosphäre regelrecht kühlen und den Treibhauseffekt des Flugverkehrs tatsächlich Richtung null drücken.“ Was nicht bedeutet, dass wir den Flugbetrieb komplett einstellen müssen.
:quality(80)/p7i.vogel.de/wcms/02/a1/02a1a07e9857b4deff7edd7ce6710e71/0109130838.jpeg)
Feinstaubquelle Flugzeug
Fliegt wie geschmiert, erzeugt aber Feinstaub
Treibstoff umstellen und Flugzahl verringern
Die Berechnungen der Studie zeigen: Wenn die Luftfahrt bis 2050 Klimaneutralität sein soll, muss sie – im Zusammenspiel mit der Kohlendioxid-Speicherung im Untergrund – den Flugverkehr jedes Jahr um 0,8 Prozent verringern, falls wir bei fossilen Treibstoffen bleiben. Er läge dann 2050 bei etwa 80 Prozent des heutigen Aufkommens. Wenn es gelingt, auf klimaschonendere Treibstoffe umzustellen, die auf Strom aus erneuerbaren Energien basieren, reichen 0,4 Prozent pro Jahr.
Diese neuen Treibstoffe hat die Studie ebenfalls genauer betrachtet. Forschende weltweit arbeiten daran, die herkömmlichen erdölbasierten Antriebe zu ersetzen. Ähnlich dem Straßenverkehr könnte das durch Elektrobatterien, Brennstoffzellen oder direkte Verbrennung von Wasserstoff geschehen. Deren Energiedichte reicht allerdings nur für kleine Flugzeuge auf kurzen Strecken, im Fall von Wasserstoff auch für mittelgroße auf mittleren Strecken. Den Hauptteil des weltweiten Flugaufkommens und der Treibhausgasemissionen in der Luftfahrt machen jedoch große Flugzeuge auf der Langstrecke mit mehr als 4.000 Kilometern aus.
Ist künstliches Kerosin die Lösung?
Hinzu kommt, dass in der Luftfahrt die Antriebstechnologien auf elektrischer oder Wasserstoffbasis bei Weitem noch nicht reif für einen breiten Einsatz sind. Als großer Hoffnungsträger der Branche gilt daher so genanntes Sustainable Aviation Fuel (SAF). Dabei handelt es sich um künstliches Kerosin, welches das erdölbasierte mehr oder minder eins zu eins ersetzen könnte, ohne dass Turbinen und Flugzeuge neu konstruiert werden müssen.
SAF können aus CO2 und Wasser über eine Produktionskaskade hergestellt werden. Das CO2 lässt sich per so genanntem Air-Capture-Verfahren aus der Luft einfangen, Wasserstoff kann durch Elektrolyse aus Wasser gewonnen werden. „Werden die dazu nötigen Prozesse ausschließlich mit erneuerbarer Energie betrieben, ist SAF so gut wie klimaneutral“, sagt Christian Bauer vom PSI-Labor für Energiesystemanalysen, der an der Studie beteiligt war. „Das macht uns unabhängiger von fossilen Energieträgern.“ Ein weiterer Vorteil von SAF: Bei seiner Verbrennung entstehen weniger kurzlebige Klimatreiber (SLCF), die man kompensieren muss, indem entsprechende Mengen CO2 aus der Luft abgeschieden und unterirdisch eingelagert werden. Das ist auch deshalb relevant, weil die Speicherkapazitäten für CO2 begrenzt und nicht nur der Luftfahrtbranche vorbehalten sind.
:quality(80)/p7i.vogel.de/wcms/74/ee/74eedc17dc995935618a4c401ec489ad/0101681272.jpeg)
Suche nach Kerosin-Ersatz
Flug ins Grüne – Projekt zu umweltfreundlicheren Flugzeug-Treibstoffen
Dreifach teurere Flugtickets
Doch Sustainable Aviation Fuel hat auch einen Nachteil, denn der Energieaufwand zur Herstellung ist weitaus größer als bei herkömmlichem Kerosin. Das liegt vor allem daran, dass die Wasserstoffproduktion per Elektrolyse viel Strom braucht. Zudem treten bei jedem Produktionsschritt – Air Capture, Elektrolyse, Synthetisierung – Energieverluste auf. Der hohe Stromverbrauch wiederum bedingt einen erheblichen Einsatz von Ressourcen wie Wasser und Land. Zudem ist SAF teuer: Nicht nur der Strombedarf, sondern auch die Kosten der CO2-Abscheidung und Elektrolyse-Anlagen machen ihn etwa vier- bis siebenmal teurer als normales Kerosin.
Mit anderen Worten: Der umfassende Einsatz von SAF macht CO2-neutrales Fliegen möglich, kostet aber mehr Ressourcen und Geld. Das Fliegen wird also noch teurer, als es ohnehin schon werden muss, um Klimaziele zu erreichen. „Wer heute ein Ticket kauft, kann seinen Flug gegen ein paar Euro Aufschlag angeblich CO2-neutral machen, indem dieses Geld in den Klimaschutz investiert wird“, sagt Sacchi. „Das ist allerdings Augenauswischerei, denn viele dieser Kompensationsmaßnahmen sind wirkungslos. Um die tatsächliche Klimawirkung umfassend auszugleichen, müsste ein Ticket im Vergleich zu heute etwa das Dreifache kosten.“
Klimaneutral fliegen bis 2050: schwierig, aber möglich
Wenn der Flugverkehr also klimaneutral werden soll, wird das einiges kosten. „Eine derart heftige Preissteigerung sollte die Nachfrage nach Flügen in der Tat erheblich senken und uns dem Ziel der Klimaneutralität näher bringen“, sagt Becattini. Außerdem sei zu erwarten, dass die Produktion von Sustainable Aviation Fuel im Laufe der Jahre mit zunehmender Menge günstiger und effizienter wird, was sich positiv auf die Klimabilanz auswirkt. Die Studie hat solche Dynamiken berücksichtigt – auch, dass sich der Strommix zur Produktion von SAF verändert. Das unterscheidet sie von den meisten anderen Analysen.
„Unterm Strich gibt es für das Ziel, bis 2050 Klimaneutralität in der Luftfahrt zu erreichen, kein Wundermittel“, sagt Sacchi. „Wir können nicht so weitermachen wie bisher. Doch wenn wir die Infrastruktur zur unterirdischen Speicherung von CO2 und zur Produktion von SAF zügig und effizient weiterentwickeln und gleichzeitig unseren Flugbedarf einschränken, kann es gelingen.“
Originalpublikation: Sacchi, R., Becattini, V., Gabrielli, P. et al.: How to make climate-neutral aviation fly, Nat Commun 14, 3989 (2023): DOI: 10.1038/s41467-023-39749-y
(ID:49601904)