Zu Beginn unseres Universums herrschte ein Zustand aus Energie und wild umherschwirrenden Teilchen vor, der als Quark-Gluon-Plasma bekannt ist. Selbst moderne Supercomputer stoßen bei der Simulation dieses Zustands an ihre Grenzen. An der TU Wien haben Physiker nun neue Machine-Learning-Algorithmen entwickelt, die bessere Vorhersagen ermöglichen sollen.
Ein Quark-Gluon-Plasma nach der Kollision zweier Atomkerne
(Bild: TU Wien)
Wien/Österreich – An manchen Phänomenen stößt unsere Vorstellungskraft an Grenzen. Etwa wenn es um den Urknall und sie Zeit unmittelbar danach geht: Mit extrem hoher Energie schwirren winzige Teilchen wild umher, in dem wirren Durcheinander von Quantenteilchen kommt es zu unzähligen Interaktionen, und so ergibt sich ein Materiezustand, den man als „Quark-Gluon-Plasma“ bezeichnet. Was einst der Beginn unseres Universums war, stellen Teilchenphysiker heute durch hochenergetische Atomkernkollisionen her, etwa am CERN in der Schweiz.
Wenn man solche Prozesse analysieren will, ist man auf Hochleistungscomputer angewiesen – und auf hochkomplexe Computersimulationen, deren Ergebnisse schwierig auszuwerten sind. Daher liegt die Idee nahe, künstliche Intelligenz bzw. Machine Learning dafür zu verwenden. Gewöhnliche Machine-Learning-Algorithmen sind für diese Aufgabe allerdings nicht geeignet – die mathematischen Eigenschaften der Teilchenphysik machen eine besondere Struktur von neuronalen Netzen notwendig. An der TU Wien hat ein Forscherteam nun gezeigt, wie man neuronale Netze für diese herausfordernden Aufgaben der Teilchenphysik nutzen kann.
Nur das berechnen, was wichtig ist
„Ein Quark-Gluon-Plasma möglichst realistisch zu simulieren, nimmt extrem viel Rechenzeit in Anspruch“, sagt Dr. Andreas Ipp vom Institut für Theoretische Physik der TU Wien. „Selbst die größten Supercomputer der Welt sind damit rasch überfordert.“ Es wäre daher wünschenswert, wenn man nicht jedes Detail präzise berechnen müsste, sondern mithilfe einer künstlichen Intelligenz gewisse Eigenschaften erkennen und vorhersagen könnte.
Hier kommen neuronale Netze ins Spiel, wie sie etwa auch für die Bilderkennung verwendet werden: Virtuelle „Zellen“ werden am Computer auf ähnliche Weise vernetzt wie Neuronen im Gehirn – und so entsteht ein Netz, das z. B. erkennen kann, ob auf einem bestimmten Bild eine Katze zu sehen ist oder nicht.
Wenn man diese Technik auf das Quark-Gluon-Plasma anwendet, stößt man allerdings auf ein schwerwiegendes Problem: Die Felder, mit denen man die Teilchen und die Kräfte zwischen ihnen mathematisch beschreibt, können auf unterschiedliche Arten dargestellt werden. „Man spricht hier von Eichsymmetrien“, sagt Ipp. „Das Grundprinzip kennen wir aus dem Alltag: Wenn ich ein Messgerät anders eiche, etwa wenn ich bei meinem Thermometer statt der Celsius-Skala die Kelvin-Skala verwende, dann erhalte ich völlig andere Zahlen, auch wenn ich denselben physikalischen Zustand beschreibe. Bei Quantentheorien ist es ähnlich – nur dass dort die erlaubten Eichungen mathematisch viel komplizierter sind.“ Mathematische Objekte, die auf den ersten Blick völlig unterschiedlich aussehen, können denselben physikalischen Zustand beschreiben.
Die Schwierigkeit mit den Eichsymmetrien umgehen
„Wenn man diese Eichsymmetrien nicht berücksichtigt, kann man die Ergebnisse der Computersimulationen nicht sinnvoll interpretieren“, sagt Ipps Kollege Dr. David I. Müller. „Einem neuronalen Netz beizubringen, diese Eichsymmetrien von sich aus zu erkennen, wäre extrem schwierig. Viel besser ist es, von vornherein die Struktur des neuronalen Netzes so zu gestalten, dass die Eichsymmetrie automatisch berücksichtigt wird – dass also unterschiedliche Darstellungen desselben physikalischen Zustands im neuronalen Netz auch dieselben Signale hervorrufen.“
Genau das ist den Physikern aus Wien jetzt gelungen: Sie haben neue Netzwerk-Schichten entwickelt, die von sich aus die Eichinvarianz berücksichtigen. In einigen Beispielanwendungen zeigten sie damit bereits, dass diese Netze tatsächlich viel besser lernen können, mit den Simulationsdaten des Quark-Gluon-Plasmas umzugehen.
Vorhersage physikalisch sinnvoller Ergebnisse
„Mit solchen neuronalen Netzwerken wird es möglich, Vorhersagen über das System zu treffen – etwa abzuschätzen, wie das Quark-Gluon-Plasma zu einem späteren Zeitpunkt aussehen wird, ohne wirklich jeden einzelnen zeitlichen Zwischenschritt im Detail ausrechnen zu müssen“, sagt Ipp. „Und gleichzeitig ist sichergestellt, dass nur solche Ergebnisse herauskommen können, die der Eichsymmetrie nicht widersprechen – die also prinzipiell physikalisch sinnvoll sind.“
Bis man etwa Atomkernkollisionen am CERN mit solchen Methoden vollständig simulieren kann, wird noch einige Zeit vergehen, aber die neue Art neuronaler Netze liefert ein neues und vielversprechendes Werkzeug, um physikalische Phänomene zu beschreiben, bei denen alle anderen Rechenmethoden rasch völlig überfordert sind.
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.