Worldwide China

Die merkwürdigste aller Flüssigkeiten

Röntgenuntersuchung enthüllt zwei unterschiedliche Arten Wasser

| Redakteur: Dr. Ilka Ottleben

Flüssiges Wasser existiert in zwei Varianten: High Density Liquid (HDL) und Low Density Liquid (LDL), die jetzt bei sehr tiefen Temperaturen nachgewiesen wurden - sich allerdings nicht in Flaschen abfüllen lassen.
Flüssiges Wasser existiert in zwei Varianten: High Density Liquid (HDL) und Low Density Liquid (LDL), die jetzt bei sehr tiefen Temperaturen nachgewiesen wurden - sich allerdings nicht in Flaschen abfüllen lassen. (Bild: Gesine Born, DESY)

Mehr zum Thema

Die merkwürdigste aller Flüssigkeiten ist noch ungewöhnlicher als bekannt: Flüssiges Wasser existiert in zwei unterschiedlichen Varianten – zumindest bei sehr tiefen Temperaturen. Das zeigen Röntgenuntersuchungen bei DESY und am Argonne National Laboratory in den USA.

Hamburg – Die Forscher um Anders Nilsson hatten sogenanntes amorphes Eis untersucht. Diese Glas-ähnliche Form von Wassereis ist bereits seit Jahrzehnten bekannt. Sie ist auf der Erde selten und kommt im Alltag nicht vor, das meiste Wassereis im Sonnensystem existiert jedoch in dieser amorphen Form. Statt in einem festen Kristall – wie etwa bei einem Eiswürfel aus dem Tiefkühlfach – liegt das Eis dabei in Form ungeordneter Molekülketten vor, was mehr der inneren Struktur eines Glases entspricht. Amorphes Eis lässt sich beispielsweise herstellen, indem flüssiges Wasser so schnell abgekühlt wird, dass die Moleküle keine Zeit haben, eine geordnete Kristallstruktur auszubilden.

Amorphes Eis existiert in zwei Varianten – flüssiges Wasser auch?

„Amorphes Eis existiert in zwei Varianten, einer mit hoher und einer mit geringerer Dichte“, erläutert DESY-Physiker Felix Lehmkühler aus dem Forscherteam. Die beiden Varianten werden als High Density Amorphous Ice (HDA) und Low Density Amorphous Ice (LDA) bezeichnet. „HDA-Eis hat eine rund 25 Prozent höhere Dichte als LDA-Eis“, sagt Lehmkühler. „Schon länger fragen sich Wissenschaftler, ob diese beiden Eis-Sorten nicht entsprechende Varianten in flüssigem Wasser haben. Das ist jedoch sehr schwer zu messen. Selbst wenn es in flüssigem Wasser beide Varianten geben sollte, durchmischen sie sich ständig, wandeln sich ineinander um, und es existiert keine Möglichkeit, die beiden zu trennen.“

Bei der Umwandlung von HDA-Eis in LDA-Eis nimmt das Eis-Volumen spontan um rund ein Viertel zu. Das ließ sich bereits vor dar aktuellen Untersuchung beobachten.
Bei der Umwandlung von HDA-Eis in LDA-Eis nimmt das Eis-Volumen spontan um rund ein Viertel zu. Das ließ sich bereits vor dar aktuellen Untersuchung beobachten. (Bild: Katrin Amann-Winkel/Filippo Cavalca, Universität Stockholm)

Diese Hürde haben die Forscher nun bei tiefen Temperaturen genommen. Im Stockholmer Labor präparierte Katrin Amann-Winkel besonders reine Proben aus HDA-Eis. Am Argonne National Laboratory in den USA beobachteten die Wissenschaftler, dass sich die innere Struktur dieses Eises bei Erwärmung zwischen minus 150 Grad und minus 140 Grad Celsius verändert – es wandelt sich dabei in eine Form niedrigerer Dichte um.

Dynamik der Phasenumwandlung verfolgt

An der Messstation P10 von DESYs Röntgenlichtquelle PETRA III konnten die Forscher nun die Dynamik dieser Phasenumwandlung verfolgen. Dabei zeigte sich, dass die Umwandlung über eine Flüssigkeit erfolgt: Zunächst geht das HDA-Eis in eine flüssige Form hoher Dichte über, dann wandelt sich dieses „High Density Liquid“ (HDL) in eine Form niedrigerer Dichte („Low Density Liquid“, LDL) um. Das belegt die Existenz der beiden vermuteten Varianten von flüssigem Wasser – zumindest bei sehr tiefen Temperaturen. Das extrem tiefgekühlte Wasser ist dabei so viskos, dass sich die beiden flüssigen Phasen nur sehr langsam ineinander umwandeln und vermischen und dadurch messbar werden.

„Die neue bemerkenswerte Eigenschaft, die wir beobachtet haben, ist, dass Wasser als zwei verschiedene Flüssigkeiten existieren kann, bei tiefen Temperaturen, bei denen die Eiskristallisation langsam ist“, erläutert Forschungsleiter Nilsson, Professor für Chemische Physik an der Universität Stockholm. „Es ist sehr spannend, dass wir mit Röntgenstrahlung in der Lage sind, die relativen Positionen der Moleküle zu verschiedenen Zeiten zu bestimmen“, ergänzt Fivos Perakis von der Universität Stockholm, gemeinsam mit Amann-Winkel Hauptautor der Studie. „Wir konnten insbesondere die Transformation der Probe zwischen den beiden Phasen bei tiefen Temperaturen verfolgen und zeigen, dass eine Diffusion einsetzt wie es typisch ist für Flüssigkeiten.“

Inhalt des Artikels:

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 44758191 / Wissenschaft & Forschung)