English China

Entstehung des Lebens Gesucht: Stabilitätsformel der ersten Biomoleküle

Quelle: Pressemitteilung Technische Universität München 3 min Lesedauer

Anbieter zum Thema

Was gab den ersten Molekülen ihre Stabilität? Dieser Frage geht ein Team an der TU München nach und hat dabei die Bildung von primitiven RNA-Molekülen im Blick. Sie waren womöglich eine Keimzelle des Lebens in der Ursuppe.

Christine Kriebisch und Prof. Job Boekhoven erforschen, wie das erste Leben entstanden ist. (Bild:  Astrid Eckert / TUM)
Christine Kriebisch und Prof. Job Boekhoven erforschen, wie das erste Leben entstanden ist.
(Bild: Astrid Eckert / TUM)

Das Leben auf der Erde begann höchstwahrscheinlich im Wasser. Vielleicht in einem Gezeitentümpel, der bei Ebbe vom Meerwasser abgeschnitten war, bei Flut hingegen von Wellen überspült wurde. Über viele Milliarden Jahre hinweg könnten sich dort komplexe Moleküle wie DNA, RNA oder Proteine und schließlich die ersten Zellen gebildet haben, so die gängige These. Doch wie genau dies geschah, kann bisher niemand gesichert erklären.

„Wir wissen, welche Moleküle auf der frühen Erde existiert haben. Die Frage ist: Können wir daraus im Labor die Entstehung des Lebens nachbauen?“, erläutert Job Boekhoven, Professor für Supramolekulare Chemie an der Technischen Universität München (TUM). Das von ihm geleitete Team des Exzellenzclusters Origins interessiert sich vor allem für die RNA. „RNA ist ein faszinierendes Molekül. Sie kann sowohl Informationen speichern als auch biochemische Reaktionen katalysieren“, sagt Boekhoven. In der Wissenschaft geht man daher davon aus, dass von allen komplexen Molekülen als erstes die RNA entstanden sein muss.

Das Problem ist: Wirksame RNA-Moleküle bestehen aus hunderten oder tausenden von Basen und sind sehr instabil. Im Wasser zerfallen RNA-Stränge schnell in ihre Einzelteile – ein Vorgang, der als Hydrolyse bezeichnet wird. Wie also konnte RNA in der Ursuppe überleben?

Vom Einzel- zum Doppelstrang in der Ursuppe

Im Labor nutzten die Forschenden der TUM und Ludwig-Maximilians-Universität (LMU) München ein Modellsystem von RNA-Basen, das einfacher Bindungen eingeht als die natürlich vorkommenden Basen in unseren heutigen Zellen. „Wir hatten schließlich keine Millionen Jahre Zeit, sondern wollten schnell eine Antwort“, sagt der Chemiker. Das Team gab diese schnellbindenden RNA-Basen in eine wässrige Lösung, gab eine Energiequelle hinzu und überprüfte, wie lang die gebildeten RNA-Moleküle waren. Das ernüchternde Ergebnis: Die gebildeten Einzelstränge von bis zu fünf Basenpaaren Länge überlebten nur wenige Minuten.

Anders sah es aus, als die Forschenden zu Beginn auch kurze Stränge von fertiger RNA hinzugaben. An diese lagerten sich die freien komplementären Basen schnell an, ein Vorgang der als Hybridisierung bezeichnet wird. Es entstanden Doppelstränge von drei bis fünf Basenpaaren Länge, die über viele Stunden hinweg stabil waren. „Das Spannende daran ist, dass Doppelstränge zur Faltung von RNA führen, wodurch diese katalytisch aktiv werden kann“, erklärt Boekhoven. Die Doppelstrang-RNA hat also zwei Vorteile: Sie verlängert die Lebensdauer des Moleküls in der Ursuppe und sie bildet die Grundlage für katalytisch aktive RNA.

Wie aber kann ein Doppelstrang in der Ursuppe entstanden sein? „Wir testen gerade, ob es möglich ist, dass die RNAs ihren eignen komplementären Strang bilden können“, sagt der Chemiker. Es wäre denkbar, dass sich ein Molekül aus drei Basen mit einem Molekül aus drei komplementären Basen zusammenlagert – das Produkt wäre ein stabiler Doppelstrang. Dank seiner längeren Lebensdauer könnten sich dann weitere Basen an ihn anlagern und der Strang würde wachsen.

Evolutionärer Vorteil für Protozellen

Noch eine weitere Eigenschaft von Doppelstrang-RNA könnte sich positiv auf die Entstehung des Lebens ausgewirkt haben. Dazu muss man zunächst wissen, dass RNA-Moleküle auch so genannte Protozellen bilden können, kleine Tröpfchen, deren Innenraum von der Außenwelt abgeschnitten ist. Diese Protozellen haben jedoch keine stabile Zellmembran. Sie können daher einfach fusionieren und dabei ihre Inhalte vermischen. Für die Evolution ist das schlecht, denn es verhindert, dass einzelne Protozellen eine eigene Identität entwickeln. Besteht der Rand der Protozelle hingegen aus Doppelstrang-RNA, wird er stabiler und Fusionen werden erschwert.

Nutzen für die medizinische Forschung

In Zukunft möchte Boekhoven weiter daran arbeiten, die Entstehung und Stabilisierung der ersten RNA-Moleküle zu verstehen. „Manche Menschen denken, diese Forschung sei so eine Art Hobby, dabei haben während der Corona-Pandemie alle Leute gesehen, wie wichtig RNA-Moleküle zum Beispiel für Impfstoffe sein können“, sagt der Chemiker. „Unsere Forschung will also nicht nur eine der ältesten Fragen der Wissenschaft beantworten. Wir generieren dabei auch Wissen über RNA, das vielen Menschen zunutze kommen könnte.“

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung

Originalpublikation: Kriebisch, C.M.E., Burger, L., Zozulia, O. et al.: Template-based copying in chemically fuelled dynamic combinatorial libraries. Nature Chemistry volume 16, pages 1240–1249 (2024); DOI:10.1038/s41557-024-01570-5

(ID:50131534)