Suchen

Aspergillus fumigatus & Nanopartikel Tückische Größe: Nanopartikel können Schimmelpilzinfektion der Atemwege begünstigen

| Autor/ Redakteur: Barbara Reinke* / Dr. Ilka Ottleben

Sie sind winzig klein, überall in der Luft und jeder von uns atmet sie täglich ein: Schimmelpilzsporen. Bei Menschen, deren Immunsystem stark geschwächt ist, können Pilzsporen gefährliche Infektionen beispielsweise der Atemwege verursachen. Hierauf haben auch Nanopartikel einen Einfluss – dies haben Wissenschaftler unter Federführung der Universitätsmedizin Mainz nun herausgefunden.

Firmen zum Thema

„Small meets smaller“: Elektronenmikroskopische Aufnahme von mit Nanopartikeln (grün) bedeckte Aspergillus fumigatus Pilzsporen.
„Small meets smaller“: Elektronenmikroskopische Aufnahme von mit Nanopartikeln (grün) bedeckte Aspergillus fumigatus Pilzsporen.
(Bild: AG Stauber)

Mainz – Was ist winzig klein, überall in der Luft und jeder von uns atmet sie täglich ein? Sporen des Gießkannenschimmels Aspergillus fumigatus. Gesunden Menschen bereiten sie in der Regel keine Probleme, denn die körpereigene Immunabwehr tötet die Eindringlinge, bevor sie sich im Körper festsetzen können. Bei Menschen, deren Immunsystem stark geschwächt ist – etwa Leukämie-, AIDS-Patienten oder Knochenmarkempfängern – nistet sich der Pilz jedoch ohne große Gegenwehr oftmals in der Lunge ein und verursacht dort die gefährliche Infektionskrankheit invasive Aspergillose. Diese ist eine der häufigsten Todesursachen bei immungeschwächten Patienten.

Ebenfalls negative gesundheitliche Auswirkungen, wie beispielsweise eine chronische Lungenerkrankung, kann die Inhalation von feinen und ultrafeinen, in hoher Konzentration vorliegenden Partikeln haben. Zu den ultrafeinen Partikeln gehören sowohl in der Umwelt vorkommende Nanopartikel aus natürlichen Quellen, wie etwa Verbrennungsprozessen, als auch Partikel aus dem Feinstaub von Verkehrsabgasen und Bauarbeiten sowie synthetisch hergestellte Teilchen wie beispielsweise Titandioxidteilchen als UV-Schutz oder Kohlenstoff-Nanoröhrchen.

Klein trifft kleiner: Wenn Pilzsporen und Nanopartikel wechselwirken

Zur Wechselwirkung von Nanopartikeln mit Pilzsporen haben Wissenschaftler unter Federführung der Universitätsmedizin Mainz nun neue Erkenntnisse gewonnen. Bereits bekannt war, dass ein gesundes Immunsystem im Grunde sehr gut aufgestellt ist, um Pilzsporen zu bekämpfen. Bei Sporen, die eine Nanopartikelhülle besitzen, scheint dies allerdings nicht der Fall zu sein – so das Ergebnis der neuen Studie. Wie die Forscher beobachteten, scheinen die Abwehrzellen bei diesem "Wolf im Schafspelz" nicht mehr in der Lage zu sein, die bekannten Oberflächenstrukturen der Pilzsporen effektiv zu erkennen. Vermehrte Entzündungsreaktionen sind eine mögliche Folge. Zudem wehrt die körpereigene Immunabwehr die umhüllten Pilzsporen nicht ausreichend ab. Die Pilzsporen werden in geringerer Anzahl abgetötet und können sich in der Lunge ausbreiten. Letztendlich kann dies das Risiko erhöhen, eine Infektionskrankheit zu erleiden und zu einem schwereren Krankheitsverlauf führen.

Nanopartikel: Entscheidend für die Bindung an Pilzsporen ist ihre Größe

„Letztendlich können wahrscheinlich jegliche Arten von Nanomaterialien an Pilzsporen binden. Entscheidend sind dabei weder Material noch Form, sondern deren Größe. Werden die Teilchen zu groß, findet keine Interaktion mehr statt – somit ein echter Nanoeffekt“, erklärt Prof. Dr. Roland Stauber von der Hals-, Nasen- Ohren-Klinik und Poliklinik der Universitätsmedizin Mainz. „Unsere aktuelle Studie belegt zudem, dass dies nicht nur im Labor stattfindet: Auch Pilzsporen aus der Umwelt, wie sie auf viel befahrenen Straßen oder bei Abrissarbeiten vorkommen, können bereits eine Partikelhülle besitzen.“

„Schimmelpilzsporen sind bekanntermaßen auch für eine Vielzahl von Atemwegsallergien verantwortlich. Ob und durch welche Mechanismen die Wechselwirkung mit Nanopartikeln und möglicherweise Umweltschadstoffen die Krankheitssymptome noch verstärken, ist noch völlig unbekannt und Gegenstand unserer aktuellen Forschung“, erläutert der Allergologe PD Dr. Sven Becker von der Hals-, Nasen- Ohren-Klinik und Poliklinik der Universitätsmedizin Mainz.

„Small meets smaller“: Forschung für eine sachliche Risikoeinschätzung von Nanopartikeln

„Die von uns angestoßene Forschungsrichtung ,Small meets smaller‘ ist hochaktuell. Auf welche Weise beispielsweise in der Nahrung vorkommende Nanoteilchen möglicherweise die Mikroben des menschlichen Verdauungstrakts, das sogenannte Mikrobiom, beeinflussen, wollen wir in weiterführenden Studien untersuchen", so Jun.-Prof. Dr. Christoph Reinhardt vom Centrum für Thrombose und Hämostase (CTH) der Universitätsmedizin Mainz.

„Ein fundiertes Wissen rund um Nano-Bio-Wechselwirkungen erlaubt nicht nur eine sachliche Risikoeinschätzung, sondern ist auch eine wichtige Voraussetzung, um effektiver und sicherer nanomedizinische Ansätze weiter entwickeln zu können. In Anbetracht der weltweit zunehmenden Resistenzentwicklung bergen unsere Erkenntnisse das Potential, der Entwicklung neuer, nanomaterial-basierter Antibiotika gegen Infektionskrankheiten zu dienen", blickt Professor Stauber in die Zukunft.

Originalveröffentlichungen:

Dana Westmeier, Djamschid Solouk-Saran, Cecilia Vallet, Svenja Siemer, Dominic Docter, Hermann Götz, Linda Männ, Anja Hasenberg, Angelina Hahlbrock, Kathrin Erler, Christoph Reinhardt, Oliver Schilling, Sven Becker, Matthias Gunzer, Mike Hasenberg, Shirley K. Knauer, and Roland H. Stauber: Nanoparticle decoration impacts airborne fungal pathobiology; PNAS June 20, 2018. 201804542; published ahead of print June 20, 2018. https://doi.org/10.1073/pnas.1804542115

Westmeier, D., Hahlbrock, A., Reinhardt, C., Frohlich-Nowoisky, J., Wessler, S., Vallet, C., Poschl, U., Knauer, S. K. & Stauber, R. H.: Nanomaterial-microbe cross-talk: physicochemical principles and (patho)biological consequences. Chem Soc Rev, doi:10.1039/c6cs00691d (2018).

Westmeier, D., Posselt, G., Hahlbrock, A., Bartfeld, S., Vallet, C., Abfalter, C., Docter, D., Knauer, S. K., Wessler, S. & Stauber, R. H.: Nanoparticle binding attenuates the pathobiology of gastric cancer-associated Helicobacter pylori. Nanoscale 10, 1453-1463, doi:10.1039/c7nr06573f (2018).

* B. Reinke: Universitätsmedizin der Johannes Gutenberg-Universität Mainz, 55131 Mainz

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de (ID: 45386126)