Anbieter zum Thema
Drei Voraussetzungen für die Zellantwort
Die untersuchte Mutante zeigte eine zusätzliche Auffälligkeit: Sie ließ keinen temporären Anstieg des zellulären Kalzium-Spiegels beobachten, wie es normalerweise nach einer IAA-induzierten Depolarisation der Fall ist. „Damit war klar, dass die Wurzelhaar-Antwort auf Auxin von komplexer Natur und möglicherweise das Resultat einer Signalkette ist“, so der Pflanzenforscher.
Tatsächlich legten Untersuchungen weiterer Auxin-Mutanten nahe, dass sowohl ein spezieller Rezeptor-Komplex als auch ein Kalzium-Kanal mit beteiligt sein müssten. Fehlte eine Komponente dieses Dreiklangs aus Auxin-Transporter, Rezeptor und Kalzium-Kanal, blieb die zellulare Antwort aus. „Dieses Verhalten konnten wir so interpretieren, dass IAA in der Zelle den Rezeptor dazu anregt, den Kalzium-Kanal zu öffnen, und damit der Zelle den Auftrag gibt, Zellteilung und Streckung dem Hormonsignal anzupassen“, erklärt Hedrich.
Pflanzen machen die Kalzium-Welle
Wie Julian Dindas weiterhin durch eine direkte Mikro-Injektion von IAA in das Wurzelhaar nachweisen konnte, sendet eine mit Auxin behandelte Zelle nicht nur ein Kalzium-Signal aus. Vielmehr setzt sie eine sich selbst verstärkende Kalzium-Welle in Gang. Fluoreszenzmikroskopische Untersuchungen zeigten ihm, dass diese Kalzium-Welle bereits innerhalb weniger Minuten die Wurzelspitze erreicht.
Dort befindet sich nicht nur die Stammzellnische der Wurzel; dort sitzen auch Sensoren für ein Auxin-abhängiges Wachstum der Pflanze, das sich an der Schwerkraft orientiert. Man kann dies beispielsweise an Bäumen beobachten, die von einem Sturm umgelegt wurden. „Mit der Zeit schaffen es diese Bäume, ihre Wurzel wieder im Boden zu verankern und den Spross wieder aufzurichten“, so Hedrich. Das mache die Angelegenheit für die Wissenschaftler besonders spannend, „denn an dieser Schaltstelle wird über das Schicksal sich differenzierender Zellen und somit über die Wurzelarchitektur bestimmt.“
Den Signalweg des Auxins entschlüsseln
Dass unterschiedliche Auxin-Konzentrationen zwischen Zellen und deren Umgebung eine Schlüsselrolle bei diesen Differenzierungsvorgängen einnehmen, ist der Wissenschaft bekannt. Bisher sei dieser Aspekt allerdings eher vor dem Hintergrund der Gen-regulatorischen Wirkung des Hormons untersucht worden, so die Würzburger Pflanzenforscher. Über die physiologische Rolle des Auxin-Signalwegs in der Zellmembran sei hingegen nahezu nichts bekannt gewesen.
„Unsere Untersuchungen deuten darauf hin, dass lokale Auxin-Signale mit Hilfe von Kalzium-Wellen über lange Strecken kommuniziert werden können, um in weit entfernt lokalisierten Zielzellen ebenfalls ein Auxin-Signal zu generieren“, so Hedrich. Wie dies auf molekularer Ebene bewerkstelligt wird und wie die von den Würzburgern identifizierten Proteine des „Auxin-Signalosoms“ in dieses Szenario eingreifen, ist Gegenstand weiterer Experimente.
Orginalpublikation: Julian Dindas, Rainer Hedrich et al.: AUX1-mediated root hair auxin influx governs SCFTIR1/AFB -type Ca2+ signaling. Nature Communications volume 9, Article number: 1174 (2018), DOI: 10.1038/s41467-018-03582-5
* Gunnar Bartsch: Julius-Maximilians-Universität Würzburg, 97070 Würzburg
(ID:45221864)