English China

Fluoreszenzmikroskopie

Forscher erreichen ultimative Auflösungsgrenze

Seite: 2/2

Firmen zum Thema

Hell hatte die Idee, die Stärken beider Techniken in einem neuen Konzept zu verbinden. „Diese Aufgabe war alles andere als trivial. Aber meine Mitarbeiter Francisco Balzarotti, Yvan Eilers und Klaus Gwosch haben hervorragende Arbeit geleistet und die Idee experimentell mit mir umgesetzt.“ Ihre neue Technik MINFLUX (von englisch minimal emission fluxes, minimale Emissionsflüsse) hat Hell jüngst publiziert.

Bildergalerie

MINFLUX schaltet – wie PALM/STORM – einzelne Moleküle zufällig an und aus. Gleichzeitig bestimmt es aber – wie STED – deren exakte Position mit einem Donut-förmigen Laserstrahl, der im Gegensatz zu STED nicht zum Abregen, sondern zum Anregen der Fluoreszenz benutzt wird. Liegt das Molekül auf dem Donut-Ring, so leuchtet es; liegt es exakt in seinem dunklen Zentrum, so leuchtet es nicht, doch man hat seine genaue Position gefunden. Damit diese Position mit höchster Präzision schnell bestimmt werden kann, entwickelte Balzarotti einen ausgeklügelten Algorithmus. „Mit diesem Algorithmus konnten wir das volle Potenzial des Donut-Laserstrahls ausschöpfen“, erläutert der Nachwuchswissenschaftler. Gwosch, dem die Aufnahme der molekular aufgelösten Bilder gelang, ergänzt: „Es war ein unglaubliches Gefühl, als wir zum ersten Mal mit MINFLUX Moleküle auf der Skala von wenigen Nanometern unterscheiden konnten.“

100 Mal bessere Zeitauflösung

Neben der molekularen Auflösung bietet die Kombination von STED und PALM/STORM einen weiteren großen Vorteil: „MINFLUX ist im Vergleich sehr viel schneller: Da die Technik mit dem Donut-Laserstrahl arbeitet, kommt sie mit wesentlich weniger Lichtsignal, das heißt Fluoreszenz-Photonen, pro Molekül aus als PALM/STORM“, so Hell. Bereits mit STED konnte man Echtzeit-Videos aus dem Inneren lebender Zellen aufnehmen. Doch nun sei es möglich, die Bewegung von Molekülen in einer Zelle mit einer 100 Mal besseren zeitlichen Auflösung zu verfolgen, wie Eilers betont. Er hatte es geschafft, mit MINFLUX die Bewegung von Molekülen in einem lebenden E. coli-Bakterium in bisher unerreichter Zeitauflösung zu „filmen“. „Und bei der Geschwindigkeit haben wir die Möglichkeiten von MINFLUX noch längst nicht ausgereizt“, sagt Eilers. Die Forscher sind überzeugt, dass sich zukünftig selbst extrem schnelle Abläufe in lebenden Zellen untersuchen lassen – etwa die Bewegung zellulärer Nanomaschinen oder die Faltung von Proteinen.

Originalpublikation: Francisco Balzarotti, Yvan Eilers, Klaus C. Gwosch, Arvid H. Gynnå, Volker Westphal, Fernando D. Stefani, Johan Elf, Stefan W. Hell. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 22. Dezember 2016.

* Dr. C. Rotte: Max-Planck-Institut für biophysikalische Chemie, 37077 Göttingen

* *Dr. H. Rösch: Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V., 80539 München

(ID:44445630)