English China

Neue Strategie

Mikroplastik vollumfänglich und ganzheitlich aus Wasser entfernen

Seite: 3/3

Anbieter zum Thema


[1] K.L. Law, R.C. Thompson, Microplastics in the seas, Science 345 (2014) 144–145.

[2] T.M. Karlsson, L. Arneborg, G. Broström, B.C. Almroth, L. Gipperth, M. Hassellöv, The unaccountability case of plastic pellet pollution, Marine Pollution Bulletin 129 (2018) 52–60.

[3] A. Lechner, H. Keckeis, F. Lumesberger-Loisl, B. Zens, R. Krusch, M. Tritthart, M. Glas, E. Schludermann, The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe's second largest river, Environmental pollution (Barking, Essex 1987) 188 (2014) 177–181.

[4] T. Mani, A. Hauk, U. Walter, P. Burkhardt-Holm, Microplastics profile along the Rhine River, Scientific reports 5 (2015) 17988.

[5] US EPA, Plastic Pellets in the Aquatic Environment: Sources and Recommendations - Final Report. EPA842-B-92-010. United states Environmental Protection Agency, Office of Water (WH556F), 1992.

[6] K. Schuhen, M.T. Sturm, Microplastic Pollution and Reduction Strategies, in: T. Rocha-Santos, M. Costa, C. Mouneyrac (Eds.), Handbook of Microplastics in the Environment, Springer International Publishing, Cham, 2020, pp. 1–33.

[7] M.A. Browne, Sources and Pathways of Microplastics to Habitats, in: M. Bergmann, L. Gutow, M. Klages (Eds.), Marine Anthropogenic Litter, Springer International Publishing, Cham, 2015, pp. 229–244.

[8] M. Sturm, K. Schuhen, Nachhaltige Entfernung von Mikroplastik aus Abwasser- die "flüssigen Partikelsammler" PE-X®, Analytik-News – Das Online-Labormagazin (2019) 1–5.

[9] M. Enfrin, L.F. Dumée, J. Lee, Nano/microplastics in water and wastewater treatment processes - Origin, impact and potential solutions, Water Research 161 (2019) 621–638.

[10] T. Rocha-Santos, M. Costa, C. Mouneyrac (Eds.), Handbook of Microplastics in the Environment, Springer International Publishing, Cham, 2020.

[11] L.M. Ziccardi, A. Edgington, K. Hentz, K.J. Kulacki, S. Kane Driscoll, Microplastics as vectors for bioaccumulation of hydrophobic organic chemicals in the marine environment: A state-of-the-science review, Environmental toxicology and chemistry / SETAC 35 (2016) 1667–1676.

[12] A. Bakir, S.J. Rowland, R.C. Thompson, Competitive sorption of persistent organic pollutants onto microplastics in the marine environment, Marine Pollution Bulletin 64 (2012) 2782–2789.

[13] J.N. Hahladakis, C.A. Velis, R. Weber, E. Iacovidou, P. Purnell, An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling, Journal of hazardous materials 344 (2018) 179–199.

[14] M. Bergmann, L. Gutow, M. Klages (Eds.), Marine Anthropogenic Litter, Springer International Publishing, Cham, 2015.

[15] N.B. Hartmann, S. Rist, A. Braun, Aquatic Ecotoxicity Testing of Nanoplastics (and microplastics) - Lessons learned from nanoecotoxicology. Sound/Visual production (digital), Kgs. Lyngby: Technical University of Denmark, DTU Environment., 2016.

[16] T.S. Galloway, M. Cole, C. Lewis, Interactions of microplastic debris throughout the marine ecosystem, Nature ecology & evolution 1 (2017) 116.

[17] S.M. Mintenig, I. Int-Veen, M.G.J. Loder, S. Primpke, G. Gerdts, Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging, Water Research (2016).

[18] J. Talvitie, A. Mikola, A. Koistinen, O. Setälä, Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies, Water Research 123 (2017) 401–407.

[19] J. Talvitie, A. Mikola, O. Setälä, M. Heinonen, A. Koistinen, How well is microlitter purified from wastewater? - A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant, Water Research 109 (2017) 164–172.

[20] F. Murphy, C. Ewins, F. Carbonnier, B. Quinn, Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment, Environmental science & technology 50 (2016) 5800–5808.

[21] T. Rocha-Santos, A.C. Duarte, A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment, TrAC Trends in Analytical Chemistry 65 (2015) 47–53.

[22] K. Magnusson, F. Nóren, Screening of microplastic particles in and downstream a wastewater treatment plant, IVL Swedish Environmental Research Institute,Stockholm, 2014.

[23] M. Heinonen, J. Talvitie, Preliminary study on synthetic microfibers and particles at a municipal waste water treatment plant,Baltic Marine Environment Protection Commission,Helsinki, 2014, http://www.helcom.fi/Lists/Publications/Microplastics%20at%20a%20municipal%20waste%20water%20treatment%20plant.pdf, accessed 14 June 2019.

[24] S.A. Carr, J. Liu, A.G. Tesoro, Transport and fate of microplastic particles in wastewater treatment plants, Water Research 91 (2016) 174–182.

[25] M.R. Michielssen, E.R. Michielssen, J. Ni, M.B. Duhaime, Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed, Environ. Sci.: Water Res. Technol. 2 (2016) 1064–1073.

[26] M.A. Browne, P. Crump, S.J. Niven, E. Teuten, A. Tonkin, T. Galloway, R. Thompson, Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks, Environ. Sci. Technol. 45 (2011) 9175–9179.

[27] H.S. Auta, C.U. Emenike, S.H. Fauziah, Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions, Environment international 102 (2017) 165–176.

[28] A. Lechner, D. Ramler, The discharge of certain amounts of industrial microplastic from a production plant into the River Danube is permitted by the Austrian legislation, Environmental pollution (Barking, Essex 1987) 200 (2015) 159–160.

[29] G. Gatidou, O.S. Arvaniti, A.S. Stasinakis, Review on the occurrence and fate of microplastics in Sewage Treatment Plants, Journal of hazardous materials 367 (2019) 504–512.

[30] J. Sun, X. Dai, Q. Wang, M.C.M. van Loosdrecht, B.-J. Ni, Microplastics in wastewater treatment plants: Detection, occurrence and removal, Water Research 152 (2019) 21–37.

[31] Deutscher Bundestag, Verordnung über Anforderungen an das Einleiten von Abwasser in Gewässer, AbwV, BGBl. I (2004) S. 1327, 2625.

[32] A.F. Herbort, K. Schuhen, A concept for the removal of microplastics from the marine environment with innovative host-guest relationships, Environmental Science and Pollution Research (2016) 1–5.

[33] A.F. Herbort, M.T. Sturm, K. Schuhen, A new approach for the agglomeration and subsequent removal of polyethylene, polypropylene, and mixtures of both from freshwater systems - a case study, Environmental science and pollution research international (2018) 15226–15234.

[34] A.F. Herbort, M.T. Sturm, S. Fiedler, G. Abkai, K. Schuhen, Alkoxy-silyl Induced Agglomeration: A New Approach for the Sustainable Removal of Microplastic from Aquatic Systems, J Polym Environ 62 (2018) 1–13.

[35] M.T. Sturm, A.F. Herbort, H. Horn, K. Schuhen, Comparative study of the influence of linear and branched alkyltrichlorosilanes on the removal efficiency of polyethylene and polypropylene-based microplastic particles from water, Environmental Science and Pollution Research 27 (2020) 10888–10898.

[36] M.T. Sturm, H. Horn, K. Schuhen, The potential of fluorescent dyes-comparative study of Nile red and three derivatives for the detection of microplastics, Analytical and bioanalytical chemistry 413 (2021) 1059–1071.

* M. Sturm, D. Schober, S. Haubensak, Dr. K. Schuhen, Wasser 3.0 gGmbH, 76187 Karlsruhe, Kontakt: schuhen@wasserdreinull.de