Cyber-Angriffe erfolgen meist über die Verbreitung schädlicher Software, die Hackern Zugriff auf die Systeme gewähren soll. Doch auch durch Manipulation der Hardware, genauer: der Mikrochips, können Angreifer gezielt Schaden anrichten. Wie sich die mikroskopischen Manipulationen aufspüren lassen, zeigen Forscher der Ruhr-Universität Bochum.
Für ihr Projekt haben die Forscher Tausende von mikroskopischen Aufnahmen von Mikrochips gemacht. Hier ist ein solcher Chip in einem goldenen Chipgehäuse zu sehen. Die untersuchte Chipfläche ist nur etwa zwei Quadratmillimeter groß.
(Bild: RUB, Marquard)
IT-Sicherheit ist heutzutage von großer Bedeutung. Ob es der Schutz sensibler Daten ist oder die Versorgungssicherheit mit Energie, Lebensmitteln, Trinkwasser – die globale Vernetzung hat dazu geführt, dass so gut wie alle Branchen ans Internet angeschlossen und damit prinzipiell über Cyber-Angriffe verwundbar sind. Sicherheitslücken können sich aber nicht nur in Software einbauen lassen, etwa über Viren und Trojaner. Auch in der Hardware kann eine Schwachstelle zu Problemen führen. Angreifer könnten sie dort absichtlich einsetzen, um technische Anwendungen in großem Stil zu attackieren.
Wie sich solche so genannten Hardware-Trojaner aufspüren lassen, untersuchen Forscher der Ruhr-Universität Bochum (RUB) und des Max-Planck-Instituts für Sicherheit und Privatsphäre (MPI-SP) in Bochum. Sie verglichen Baupläne für Chips mit elektronenmikroskopischen Bildern von echten Chips und ließen einen Algorithmus nach Unterschieden suchen. Auf diese Weise detektierten sie Abweichungen in 37 von 40 Fällen.
Bildergalerie
Fertigungsfabriken als Einfallstor für Hardware-Trojaner
Elektronische Chips sind heute in zahllosen Objekten verbaut. In der Regel werden sie von Designhäusern entworfen, die keine eigene Produktion besitzen. Die Baupläne wandern daher zwecks Fertigung zu hochspezialisierten Chipfabriken. „Es ist denkbar, dass in den Fabriken kurz vor der Produktion kleinste Veränderungen in die Designs eingefügt werden, die die Sicherheit der Chips außer Kraft setzen können“, erklärt Dr. Steffen Becker vom RUB-Exzellenzcluster Cyber Security in the Age of Large-Scale Adversaries und gibt ein Beispiel für mögliche Konsequenzen. „Durch einen solchen Hardware-Trojaner könnte ein Angreifer im Extremfall auf Knopfdruck Teile der Telekommunikations-Infrastruktur lahmlegen.“
Chip-Analyse per Rasterelektronenmikroskop
Das Team um Becker und Endres Puschner vom MPI-SP untersuchte Chips in den vier modernen Technologiegrößen 28, 40, 65 und 90 Nanometer. Sie arbeiteten mit Dr. Thorben Moos zusammen, der während seiner Promotion an der Ruhr-Universität Bochum mehrere Chips designt hatte und hatte anfertigen lassen. Somit lagen sowohl die Designdateien als auch die angefertigten Chips vor. Natürlich konnten die Forscher die Chips nicht nachträglich verändern und Hardware-Trojaner einbauen. Also bedienten sie sich eines Tricks: Sie manipulierten nicht die Chips, sondern veränderten die Designs nachträglich so, dass minimale Abweichungen zwischen den Plänen und den Chips entstanden. Dann prüfte die Bochumer Gruppe, ob sie diese Veränderungen aufspüren konnte, ohne zu wissen, was genau sie wo suchen mussten.
Das Team der RUB und vom MPI musste die Chips dazu zunächst aufwändig chemisch und mechanisch präparieren, um dann mit einem Rasterelektronenmikroskop jeweils mehrere Tausend Bilder der untersten Chipebenen aufnehmen zu können. Auf diesen Ebenen befinden sich mehrere Hunderttausend der so genannten Standardzellen, die logische Operationen ausführen. „Die Chipbilder und die Designpläne zu vergleichen war eine Herausforderung, weil wir die Daten zunächst präzise übereinanderlegen mussten“, erklärt Puschner. Hinzu kam, dass jede kleine Verunreinigung auf dem Chip die Sicht auf bestimmte Bildbereiche versperren konnte. „Bei dem kleinsten Chip von 28 Nanometern Größe kann ein einziges Staubkorn oder Haar eine ganze Reihe von Standardzellen verdecken“, sagt der IT-Sicherheitsspezialist.
So zuverlässig erkennt die Methode Chip-Manipulation
Mithilfe von Bildverarbeitungsmethoden verglichen die Forscher Standardzelle für Standardzelle und suchten Abweichungen zwischen den Plänen und den mikroskopischen Aufnahmen der Chips. „Die Ergebnisse stimmen vorsichtig optimistisch“, resümiert Puschner. Bei den Chipgrößen von 90, 65 und 40 Nanometern detektierte das Team alle Veränderungen zuverlässig. Gleichzeitig gab es 500 falsch-positive Treffer: Es wurden also Standardzellen als verändert erkannt, obwohl sie in Wirklichkeit unangetastet waren. „Bei mehr als 1,5 Millionen untersuchten Standardzellen ist das eine sehr gute Quote“, befindet Puschner. Lediglich bei dem kleinsten Chip von 28 Nanometern konnten die Forscher drei subtile Veränderungen nicht detektieren.
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.
Um auch bei den kleinsten Chips verlässliche Ergebnisse zu erhalten, wäre eine bessere Aufnahmequalität nötig. „Es gibt Rasterelektronenmikroskope, die auf die Aufnahme von Chipbildern spezialisiert sind“, sagt RUB-Forscher Becker. Wenn diese noch dazu in einem Reinraum eingesetzt würden, in dem Verunreinigungen verhindert werden könnten, sollte die Detektionsquote nochmals steigen.
„Wir hoffen auch, dass andere Gruppen mit unseren Daten weiterarbeiten“, gibt der Spezialist für Cyber Security einen Ausblick. „Durch maschinelles Lernen könnte der Detektionsalgorithmus vermutlich so weit verbessert werden, dass er auch die Veränderungen auf den kleinsten Chips erkennen würde, die uns entgangen sind.“ (clu)