Worldwide China

Einzelne Silber-Nanopartikel in Echtzeit beobachtet

Stabiler als gedacht? Wie Nano-Silber auf Mensch und Umwelt wirkt

| Autor / Redakteur: Dr. Julia Weiler* / Dr. Ilka Ottleben

Das Team um Kristina Tschulik entwickelte daher eine Methode, mit der sich einzelne Silberpartikel in natürlicher Umgebung untersuchen lassen.
Das Team um Kristina Tschulik entwickelte daher eine Methode, mit der sich einzelne Silberpartikel in natürlicher Umgebung untersuchen lassen. (Bild: © RUB, Kramer)

Silber-Nanopartikel wirken antibakteriell und entzündungshemmend. Daher kommen Sie in der Medizin beispielsweise in Pflastern zur Wunddesinfektion oder auch in Textilien vielfach zum Einsatz. Auch die Nahrungsmittelindustrie nutzt sogenanntes Nano-Silber. Aber über die Wirkweise und den Abbau von Silber-Nanopartikel in Mensch und Umwelt ist bislang wenig bekannt.

Bochum – ChemikerInnnen der Ruhr-Universität Bochum haben eine neue Methode entwickelt, um in Echtzeit die chemischen Reaktionen von einzelnen Silber-Nanopartikeln zu beobachten, die gerade einmal ein Tausendstel der Dicke eines menschlichen Haares messen. Die Partikel werden in der Medizin, in Nahrungsmitteln und Sportartikeln genutzt, weil sie antibakteriell und entzündungshemmend wirken. Wie sie in ökologischen und biologischen Systemen reagieren und abgebaut werden, ist bislang aber kaum verstanden. Das Team der Forschungsgruppe für Elektrochemie und Nanoskalige Materialien zeigte, dass sich die Nanopartikel unter bestimmten Bedingungen in schwerlösliches Silberchlorid umwandeln.

Einzelne Silber-Nanopartikel: Messung in natürlicher Umgebung

Selbst unter wohldefinierten Laborbedingungen haben aktuelle Forschungsarbeiten unterschiedliche, teils widersprüchliche Ergebnisse zur Reaktion von Silber-Nanopartikeln erbracht. „In jeder Nanopartikel-Charge variieren die individuellen Eigenschaften der Partikel wie Größe und Form“, sagt die Leiterin der Arbeitsgruppe Prof. Dr.Kristina Tschulik, Mitglied im Exzellenzcluster Ruhr Explores Solvation. „Mit bisherigen Verfahren wurde meist eine Myriade von Partikeln gleichzeitig untersucht, sodass Auswirkungen dieser Variationen nicht erfasst werden konnten. Oder die Messungen fanden im Hochvakuum statt, nicht unter natürlichen Bedingungen in wässriger Lösung.“

Das Team um Kristina Tschulik entwickelte daher eine Methode, mit der sich einzelne Silberpartikel in natürlicher Umgebung untersuchen lassen. „Unser Ziel ist, die Reaktivität von einzelnen Partikeln erfassen zu können“, erklärt die Forscherin. Dafür braucht es eine Kombination aus elektrochemischen und spektroskopischen Methoden. Mit der optischen und hyperspektralen Dunkelfeldmikroskopie konnte die Gruppe einzelne Nanopartikel als farbige Bildpunkte sichtbar machen. Anhand der Farbänderung der Punkte, genauer gesagt anhand ihrer spektralen Information, konnten die WissenschaftlerInnen in Echtzeit verfolgen, was in einem elektrochemischen Experiment passiert.

Abbau der Silber-Nanopartikel verlangsamt

Mit dem Versuch stellte das Team die Oxidation von Silber in Anwesenheit von Chlorid-Ionen nach, wie sie häufig in ökologischen und biologischen Systemen erfolgt. „Bislang ging man meist davon aus, dass sich die Silberpartikel in Form von Silberionen auflösen“, beschreibt Kristina Tschulik. Im Experiment bildete sich jedoch schwerlösliches Silberchlorid – selbst wenn nur wenige Chlorid-Ionen in der Lösung vorhanden waren.

„Dadurch wird die Lebensdauer der Nanopartikel extrem verlängert und ihr Abbau unerwartet drastisch verlangsamt“, resümiert Tschulik. „Das ist gleichermaßen für Gewässer wie für Lebewesen wichtig, weil sich das Schwermetall Silber durch diesen Mechanismus lokal anreichern könnte, was für viele Organismen toxisch sein kann.“

Weiterentwicklung geplant

Ihre Technik zur Analyse einzelner Nanopartikel will die Bochumer Gruppe nun weiterentwickeln, um die Alterungsmechanismen solcher Partikel besser zu verstehen. So wollen die Forscher künftig weitere Informationen zur Biokompatibilität der Silberteilchen und zur Lebensdauer und Alterung von katalytisch aktiven Nanopartikeln erlangen.

Originalveröffentlichung: Kevin Wonner, Mathies V. Evers, Kristina Tschulik: Simultaneous opto- and spectro-electrochemistry: reactions of individual nanoparticles uncovered by dark-field microscopy, in: Journal of the American Chemical Society, 2018, DOI: 10.1021/jacs.8b02367

* Dr. J. Weiler: Ruhr-Universität Bochum, 44801 Bochum

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 45423203 / Bio- & Pharmaanalytik)