Er hat die Augen seiner Mutter aber die Nase seines Vaters – ein Satz wie dieser spielt darauf an, dass wir von beiden Elternteilen Merkmale vererbt bekommen. Doch selbst, wenn man gleiche Gene betrachtet, kann es einen Unterschied machen, von welchem Elternteil sie stammen. Forscher haben nun neue Erkenntnisse zu dieser genetischen Prägung gewonnen und zeigen, wie sie sich auf den Zelltod auswirken.
Astrozyten im Gehirn von Mäusen, markiert mit der MADM-Technik
(Bild: Simon Hippenmeyer / IST Austria)
Klosternburg/Österreich – Bekanntlich erben wir je eine Hälfte unserer Gene von unseren Eltern. Für die Funktion der allermeisten Gene ist es gleichgültig, von welchem Elternteil sie stammen. Doch das gilt nicht ausnahmslos: Rund 150 Gene, die der „genomischen Prägung“ unterliegen, sind entweder nur aktiv, wenn sie von der Mutter geerbt wurden, oder nur aktiv, wenn sie vom Vater geerbt wurden. Die meisten dieser geprägten Gene sind wichtig für unsere Entwicklung.
Frühere Studien zeigten bereits, dass geprägte Gene in manchen Geweben stärker aktiv sind als in anderen. Die Neurowissenschaftler um Prof. Simon Hippenmeyer vom Institute of Science and Technology (IST) Austria haben nun herausgefunden, dass geprägte Gene auch in der Großhinrinde in manchen Zelltypen stärker exprimiert werden, also aktiver sind, als in anderen Zelltypen.
Geneaktivität in der Zelle regeln
Um zu untersuchen, welchen Effekt diese unterschiedliche Genaktivität hat, wandten die Forscher die von Hippenmeyer etablierte MADM-Technik an. „Mit dieser Technik können wir Zellen farblich markieren und gleichzeitig den Expressionslevel der Gene hinauf- oder hinunterschrauben“, erklärt Susanne Laukoter, eine der Studienautorinnen. „In unseren Experimenten verdoppelten wir die Expression geprägter Gene in manchen Zellen, in manchen schalteten wir sie komplett aus. Wir konnten so auf Einzelzell-Ebene beobachten, wie Zellen auf die Veränderung der Gendosis reagieren.“
So stellten die Forscher fest, dass Zellen auf die Dosisveränderung von geprägten Genen reagieren, indem sie bestimmte Gengruppen aktivieren – insbesondere solche Gruppen, die für Zelltod, Wachstum und die Entwicklung von Synapsen wichtig sind. Am stärksten fiel diese Antwort im Zelltyp der Astrozyten aus, einer Form von Gliazellen, die die Nervenzellen unterstützen.
Eine genaue Analyse der Astrozyten zeigte, dass Astrozyten mit einer doppelten Dosis einiger väterlichen Gene immer in höherer Zahl vorhanden sind als Astrozyten mit einer doppelten Dosis der entsprechenden mütterlichen Gene. Dieser Unterschied zog sich durch die gesamte Gehirnentwicklung durch. Das hat entscheidende Folgen, wie die Forscher berichten. „Entweder schützt die genomische Prägung Zellen mit einer doppelten väterlichen Gendosis vor dem Zelltod, oder die doppelte mütterliche Gendosis beschleunigt den Zelltod“, erläutert Florian Pauler, der ebenfalls an der Studie mitgewirkt hat.
Frühere Studien legten bereits eine Verbindung zwischen genomischer Prägung und Zelltod nahe. Die neu erschienene Studie zeigt nun, dass diese Verbindung vom Zelltyp abhängt und in Astrozyten besonders stark ist. Neuronen mit einer doppelten Anzahl an mütterlichen Genen reagierten nicht mit Zelltod, stattdessen bildeten sie andere Verknüpfungen und Netzwerke. „Jeder Zelltyp reagiert unterschiedlich auf die Disomie, also das Vorhandensein von zwei mütterlichen oder zwei väterlichen Genen“, sagt Studienleiter Hippenmeyer.
Erkenntnisse können bei Erbkrankheiten helfen
Die Erkenntnisse der aktuellen Studie können auch für Menschen wichtig sein. „Das Prader-Willi-Syndrom und das Angelman-Syndrom werden von einer Verdopplung eines genomisch geprägten Chromosomen-Abschnitts verursacht. Jedes Organ reagiert unterschiedlich auf die Verdopplung. Wenn wir die Zelltyp-spezifische Reaktion besser verstehen, kann eine gezielte Therapie in Zukunft hoffentlich möglich werden“, führt Hippenmeyer aus.
Die Studie löst auch eine langjährige Debatte in der Neurobiologie darüber, wie viele Gene im Gehirn genomisch geprägt sind. „Ein paar Dutzend Gene in der Großhirnrinde sind genomisch geprägt und beeinflussen signifikant die Entwicklung“, fasst der Studienleiter zusammen.
Originalpublikation: Susanne Laukoter, Florian M. Pauler, Robert Beattie, Nicole Amberg, Andi H. Hansen, Carmen Streicher, Thomas Penz, Christoph Bock & Simon Hippenmeyer: „Cell-Type Specificity of Genomic Imprinting“, Cerebral Cortex. Neuron (2020). DOI: 10.1016/j.neuron.2020.06.031
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.
* P. Müller, Institute of Science and Technology Austria, 3400 Klosterneuburg