Suchen

Pionierarbeit am European XFEL

β-Laktamase: Jungfernflug am Röntgenlaser enthüllt unbekannte Struktur

Seite: 2/3

Firmen zum Thema

Probentransport: Geschwindigkeitsrekord der Formel 1 erreicht

Die winzigen Kristalle werden üblicherweise in einem Wasserstrahl in den Pfad des Röntgenlasers gesprüht. Auch Wasser verdampft durch den Blitz, und somit muss sich ein intakter Wasserstrahl rechtzeitig vor dem nächsten Blitz wieder ausbilden. „Wir haben die Geschwindigkeit des Wasserstrahls, der die Proben transportiert, auf bis zu 100 Meter pro Sekunde beschleunigt – das entspricht ungefähr dem Geschwindigkeitsrekord in der Formel 1“, erläutert Max Wiedorn vom CFEL, der mit seinem Institutskollegen Dominik Oberthür für diesen Probentransport verantwortlich war. Eine maßgeschneiderte Düse sorgte dabei für einen stabilen Wasserstrahl mit den nötigen Eigenschaften.

Eine der schnellsten Röntgenkameras der Welt

Um die Beugungsbilder in schneller Folge aufzuzeichnen, hatte ein internationales Konsortium unter Leitung von DESY-Wissenschaftler Heinz Graafsma in jahrelanger Arbeit eine der schnellsten Röntgenkameras der Welt entworfen und gebaut, maßgeschneidert für den European XFEL. Anders als bei gewöhnlichen Digitalkameras besitzt beim „Adaptive Gain Integrating Pixeld Detector“ (AGIPD) jedes Pixel 352 eigene Speicherzellen, die dann in einem Durchgang ausgelesen werden. Zudem lässt sich die Empfindlichkeit jedes einzelnen Pixels individuell regeln. So kann der Detektor nicht nur mit der ultraschnellen Pulsrate des European XFEL mithalten, sondern auch einen enormen Empfindlichkeitsbereich abdecken und damit feinste Variationen in den Beugungsmustern darstellen.

Ergänzendes zum Thema
Serielle Femtosekunden-Röntgenkristallographie

Die serielle Femtosekunden-Röntgenkristallographie („serial femtosecond X-ray crystallography“, SFX) ist eine überaus leistungsfähige Methode zur Bestimmung der atomaren Struktur verschiedener Proben, typischerweise Biomoleküle wie Proteine. Das Verfahren baut auf der klassischen Kristallographie auf, die vor mehr als einem Jahrhundert entwickelt wurde. In der Kristallographie werden Röntgenstrahlen auf einen Kristall gerichtet. Der Kristall beugt die Röntgenstrahlen auf charakteristische Weise und bildet ein Beugungsmuster auf dem Detektor. Wenn von allen Seiten des Kristalls genügend Beugungsmuster aufgezeichnet werden, kann seine innere Struktur aus den kombinierten Mustern berechnet werden, wodurch die Form seiner Bausteine, also der Moleküle, sichtbar wird.

Die meisten Biomoleküle sind jedoch sehr empfindlich, werden leicht durch Röntgenstrahlen beschädigt und bilden nur schwer Kristalle. Oftmals lassen sich nur sehr kleine Kristalle züchten. Die kurzen, aber extrem hellen Blitze von Röntgenlasern wie dem European XFEL überwinden dabei gleich zwei Probleme: Sie sind hell genug, um selbst aus kleinsten Kristallen brauchbare Beugungsmuster zu erzeugen, und sie sind so kurz, dass sie von den Strahlenschäden nicht beeinflusst werden. Ein typischer Röntgenlaserblitz dauert nur wenige Femtosekunden (billiardstel Sekunden) und hat den Kristall bereits verlassen, bevor dieser verdampft. Diese Methode heißt „Diffraction before Destruction“ (etwa „Beugung vor Zerstörung“). Da aber jeder Kristall in einem einzigen Blitz verdampft wird, muss bei jedem Blitz ein neuer Kristall geröntgt werden. Deshalb sprühen die Wissenschaftler Tausende von zufällig orientierten Proteinkristallen in den Pfad des Röntgenlasers und zeichnen Serien von Beugungsmustern auf, bis sie genügend Daten gesammelt haben, um die Struktur des Proteins atomgenau zu berechnen.

Um diese Daten am European XFEL effizient aufzuzeichnen, muss der Detektor die schnellsten Röntgen-Serienbilder der Welt aufnehmen: Der European XFEL liefert Röntgenblitze in zehn Pulsfolgen („pulse trains“) pro Sekunde. In jeder Folge liegen die Blitze nur 220 Nanosekunden (milliardstel Sekunden) auseinander. Keine zuvor existierende Röntgenkamera konnte mit dieser hohen Geschwindigkeit Bilder aufnehmen. Die Entwickler des „Adaptive Gain Integrating Pixel Detector“ (AGIPD) mussten einen Trick anwenden: Im Gegensatz zu herkömmlichen Digitalkameras ist jedes Pixel dieser Megapixel-Röntgenkamera mit eigenen 352 Speicherzellen ausgestattet, die mit einer Rate von fast 5 Megahertz (MHz) beschrieben werden können und damit der Pulsfrequenz des Röntgenlasers entsprechen. In diesen Speicherzellen werden die Bilddaten zwischengelagert und gemeinsam zehnmal pro Sekunde ausgelesen. Auf diese Weise kann der AGIPD 3520 Bilder pro Sekunde aufnehmen. Dabei erzeugt er einen Datenstrom, der zwei vollen DVDs pro Sekunde entspricht. Außerdem passt jedes Pixel seine Empfindlichkeit dynamisch an das einfallende Röntgenlicht an. Diese adaptive Verstärkung erweitert den Empfindlichkeitsbereich des Detektors erheblich. Im gleichen Bild kann es Pixel mit nur einem Photon und solche mit Tausenden von Photonen geben. Dieser große Dynamikbereich ist mit herkömmlichen Digitalkameras nicht möglich.

Beim European XFEL ist zurzeit ein AGIPD installiert und in Betrieb, ein zweiter wird in den nächsten Monaten installiert. Das Projekt wird von European XFEL, DESY und dem Schweizer Paul-Scherrer-Institut finanziert, das Entwicklerkonsortium umfasst Mitglieder des Paul Scherrer Instituts, der Universität Hamburg, der Universität Bonn und von DESY.

„Die Anforderungen des European XFEL sind so einzigartig, dass der Detektor von Grund auf neu entworfen und für diese Aufgabe maßgeschneidert werden musste“, berichtet Graafsma, der die Detektorgruppe im DESY-Forschungsbereich Photon Science leitet und Professor an der Mittelschwedischen Universität in Sundsvall ist. „Das war nur dank der umfassenden Expertise und fruchtbaren Kooperation des gesamten großen Teams möglich.“

Leistungsfähigkeit des Röntgenlasers bestätigt

Die Forscher testeten die neue Anlage zunächst mit einer sehr gut untersuchten Substanz, dem Enzym Lysozym aus Hühnereiweiß. Tatsächlich passt die am European XFEL bestimmte Struktur, die feine Details von bis zu 0,18 Nanometern (millionstel Millimetern) zeigt, perfekt zu der bereits mit hoher Detailgenauigkeit bekannten Struktur des Enzyms.

Bildergalerie

Bildergalerie mit 7 Bildern

„Das ist eine exzellente Bestätigung der Leistungsfähigkeit der Anlage“, unterstreicht Röntgenlaser-Pionier Henry Chapman, Leitender Wissenschaftler bei DESY und Professor an der Universität Hamburg. „Wir sind begeistert von der Geschwindigkeit der Analyse: Experimente, die sonst Stunden in Anspruch genommen haben, lassen sich jetzt in ein paar Minuten durchführen, wie wir gezeigt haben. Und der von uns verwendete Aufbau lässt sich sogar noch weiter optimieren, wodurch die Messgeschwindigkeit noch zusätzlich steigt. Der European XFEL bietet glänzende Aussichten für die Erkundung des Nanokosmos.“

Die beeindruckende Leistung des Röntgenlasers ist insbesondere auch ein Erfolg des DESY-Beschleunigerteams, das den Bau des weltweit längsten supraleitenden Linearbeschleunigers geleitet hat, der den European XFEL antreibt und auch vom DESY-Beschleunigerkontrollraum aus gesteuert wird.

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de (ID: 45530989)