Suchen

Pionierarbeit am European XFEL

β-Laktamase: Jungfernflug am Röntgenlaser enthüllt unbekannte Struktur

Seite: 3/3

Firmen zum Thema

Antibiotika-Resistenz: Bisher unbekannte Details der β-Laktamase-Struktur aufgeklärt

Als zweite Probe wählten die Forscher ein bakterielles Enzym, das eine wichtige Rolle bei Antibiotika-Resistenzen spielt. Das Molekül mit der Bezeichnung CTX-M-14-β-Laktamase isolierten die Wissenschaftler aus dem Bakterium Klebsiella pneumoniae. Von diesem Bakterium kursieren zum Teil mehrfach resistente Stämme in Krankenhäusern und stellen dort ein gravierendes Problem dar. Vor zwei Jahren wurde in den USA sogar ein Stamm identifiziert, der nach Angaben der US-Seuchenschutzbehörde CDC gegen alle 26 gewöhnlich verfügbaren Antibiotika resistent war.

Das Enzym CTX-M-14-β-Laktamase kommt in allen Stämmen des Bakteriums vor. Es funktioniert wie eine Art molekulare Schere und zerschneidet die sogenannten Laktam-Ringe der Penizillin-Antibiotika, wodurch diese wirkungslos werden. Um dies zu vermeiden, werden Antibiotika häufig mit der Substanz Avibactam zusammen verabreicht. Avibactam legt sich gewissermaßen zwischen die Scherenblätter des Enzyms und blockiert so die Schneidefunktion. Durch Mutationen kann sich jedoch die Form der molekularen Schere ändern. „Manche Krankenhausstämme von Klebsiella pneumoniae können bereits speziell entwickelte Antibiotika der dritten Generation spalten“, berichtet Ko-Autor Christian Betzel, ebenfalls Professor an der Universität Hamburg. „Wenn wir verstehen, wie das genau geschieht, könnte das eventuell dabei helfen, Antibiotika zu entwerfen, die dieses Problem umgehen.“

Bildergalerie

Bildergalerie mit 7 Bildern

Die Forscher durchleuchteten einen Komplex der CTX-M-14-β-Laktamase des nicht-resistenten, gewöhnlichen „Wildtyps“ des Bakteriums mit dem angekoppelten Inhibitor Avibactam an seinem aktiven Zentrum. „Die Ergebnisse zeigen mit 0,17 Nanometern Genauigkeit, wie sich das Avibactam genau in eine tiefe Furche auf der Enzymoberfläche schmiegt, der das aktive Zentrum darstellt“, erläutert Ko-Autor Markus Perbandt von der Universität Hamburg. „Diesen spezifischen Komplex hatte zuvor niemand je gesehen, allerdings war die Struktur der beiden separaten Komponenten bereits bekannt.“

Die Messungen zeigen, dass sich Strukturinformationen von hoher Qualität mit dem European XFEL gewinnen lassen. Die Forscher sehen dies als einen ersten Schritt zur Aufzeichnung von Serien-Schnappschüssen von biochemischen Reaktionsabläufen zwischen Enzymen und ihren Substraten. Zusammen mit den Ko-Autoren Martin Aepfelbacher und Holger Rohde, Professoren am Hamburger Universitätsklinikum Eppendorf (UKE), plant das Team, den Röntgenlaser im nächsten Schritt als eine Art Filmkamera einzusetzen, um aus solchen Serienbildern einen Film der molekularen Dynamik von Enzym und Inhibitor zu erstellen. „Solche Filme würden uns entscheidende Einblicke in den biochemischen Prozess geben, die uns eines Tages helfen könnten, bessere Inhibitoren zu entwerfen und damit Antibiotikaresistenzen zu reduzieren“, sagt Betzel.

Geschwindigkeit eröffnet neue Wege in der Strukturforschung

Filme von chemischen und biochemischen Reaktionen sind nur ein Beispiel aus einem breiten Spektrum neuer wissenschaftlicher Experimente, die durch den European XFEL möglich werden. Ein Schlüsselfaktor ist dabei die Geschwindigkeit, mit der sich Daten sammeln lassen. „Das eröffnet ganz neue Wege in der Strukturforschung“, unterstreicht Ko-Autor Adrian Mancuso, Leiter der Messstation SPB/SFX (Single Particles, Clusters and Biomolecules & Serial Femtosecond Crystallography) am European XFEL, wo die Experimente stattgefunden haben. „Der Unterschied bei der hier gezeigten Geschwindigkeit, mit der Entdeckungen am European XFEL möglich sind, ist so drastisch wie der Unterschied der Reisezeit über den Atlantik zwischen einem Schiff und einem Flugzeug. Die Auswirkungen können immens sein.“

Ergänzendes zum Thema
European XFEL am DESY

Der zu einem großen Teil von Deutschland finanzierte European XFEL ist eine neue internationale Forschungseinrichtung im Raum Hamburg, die für Forschungsgruppen aus aller Welt offen ist. Er ist der größte Röntgenlaser der Welt und erzeugt ultrakurze und extrem helle Röntgenblitze.

Der European XFEL wird von einem rund zwei Kilometer langen supraleitenden Linearbeschleuniger angetrieben, der von einem von DESY geführten Konsortium gebaut wurde und von DESY betrieben wird. Er beginnt auf dem DESY-Gelände in Hamburg und beschleunigt Elektronen in engen Bündeln auf fast Lichtgeschwindigkeit. In sogenannten Undulatoren werden die Elektronenpakete dann durch einen magnetischen Slalomkurs getrieben. In jeder Kurve strahlen die Teilchen Röntgenstrahlung ab, die sich zu einem laserähnlichen Puls addiert.

Der European XFEL ist so konzipiert, dass er 27 000 solcher Röntgenpulse pro Sekunde erzeugen kann. XFEL steht für X-ray free-electron laser, also Freie-Elektronen-Röntgenlaser, da die frei fliegenden Elektronen laserartige Röntgenblitze erzeugen. Diese Blitze können in der Experimentierhalle im schleswig-holsteinischen Schenefeld auf insgesamt sechs Messstationen verteilt werden, die als wissenschaftliche Instrumente bezeichnet werden und sich jeweils auf verschiedene Forschungsbereiche spezialisiert haben wie die Kartierung der atomaren Details von Viren, die Entschlüsselung der molekularen Zusammensetzung von Zellen, das dreidimensionale „Fotografieren“ der Nanowelt, das „Filmen“ chemischer Reaktionen und das Erforschen von Prozessen, wie sie tief in den Planeten stattfinden.

Zwei Instrumente sind derzeit in Betrieb, die anderen sollen in naher Zukunft in Betrieb gehen. Der Betrieb der Anlage ist European XFEL übertragen, einer gemeinnützigen Gesellschaft, die eng mit ihrem Hauptgesellschafter DESY und anderen Organisationen weltweit zusammenarbeitet. Derzeit haben 12 Länder die European-XFEL-Konvention unterzeichnet: Dänemark, Deutschland, Frankreich, Großbritannien, Italien, Polen, Russland, Schweden, Schweiz, Slowakei, Spanien und Ungarn.

Das Center for Free-Electron Laser Science (CFEL) ist eine gemeinsame Einrichtung der Universität Hamburg, der Max-Planck-Gesellschaft und von DESY.

DESY zählt zu den weltweit führenden Beschleunigerzentren und erforscht die Struktur und Funktion von Materie – vom Wechselspiel kleinster Elementarteilchen, dem Verhalten neuartiger Nanowerkstoffe und lebenswichtiger Biomoleküle bis hin zu den großen Rätseln des Universums. Die Teilchenbeschleuniger und die Nachweisinstrumente, die DESY an seinen Standorten in Hamburg und Zeuthen entwickelt und baut, sind einzigartige Werkzeuge für die Forschung. DESY ist ein Forschungszentrum der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert.

Strategie der „offenen Forschung“ erfolgreich

Diese erste wissenschaftliche Messzeit am European XFEL hat zwei Wochen nach der Eröffnung der Anlage im September 2017 stattgefunden und war für alle WissenschaftlerInnen auf diesem Feld geöffnet, die teilnehmen, beitragen, lernen und Erfahrungen an der neuen Anlage sammeln konnten. „Der Erfolg dieser Strategie der 'offenen Forschung' zeigt sich unter anderem an der schnellen Veröffentlichung von Ergebnissen späterer Messkampagnen an der SPB/SFX-Instrument durch teilnehmende Gruppen“, erläutert Chapman. „Darüber hinaus hat die konzertierte Kombination von Können aus der gesamten Forschungsgemeinde erfolgreich zuvor ungelöste Aufgaben beim Management und der Visualisierung von Daten gemeistert, was entscheidend für alle Röntgenkristallographie-Serienuntersuchungen am European XFEL ist.“

DESYs Forschungsdirektor für Photon Science, Edgar Weckert, beglückwünschte alle ForscherInnen der ersten Messzeit zu ihrer Pionierleistung: „Diese großen Erfolge zeigen das volle Potenzial des supraleitenden Röntgenlasers für Hochdurchsatzanalysen, die die Forschung auf diesem Gebiet grundlegend verändern können.“

Originalpublikation: Max O. Wiedorn, Dominik Oberthür, Richard Bean, Robin Schubert, Nadine Werner et al: Megahertz serial crystallography, Nature Communications, 2018; DOI: 10.1038/s41467-018-06156-7

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de (ID: 45530989)