English China

Fokussierte Mikrowellen-Synthese

Chemie in der Mikrowelle

Seite: 2/2

Anbieter zum Thema

Literaturangaben zum Artikel

[1] P. Lidström et al., Tetrahedron Lett. 2001, 57, 9225

[2] R. Gedye et al., Tetrahedron Lett., 1986, 27, 279

Bildergalerie mit 5 Bildern

[3] R. J. Giguere, Tetrahedron Lett. 1986, 27, 4945-4948

[4] B. C. Glass, A. P. Combs in: High-Throughput Synthesis. Practices and Principles, Chap. 4.6, Marcel Dekker, New York 2001

[5] D. M. P. Mingos und D. R. Baghorst, Chem. Soc. Rev. 1991, 20, 1-47

[6] J. Theis und H. Ritter, GIT 3/2011, 170 – 173, „Entdecke die Möglichkeiten“

[7] Yoshimura, Y., Shimizu, H., Hinou, H., and Nishimura, S.‐I. (2005) A novel glycosylation concept; microwave‐assisted acetal‐exchange type glycosylations from methyl glycosides as donors, Tetrahedron Lett. 46 , 4701‐4705.

[8] Rodríguez, B., and Bolm, C. (2006) Thermal Effects in the Organocatalytic Asymmetric Mannich Reaction, J. Org. Chem. 71 , 2888‐2891.

[9] Singh, B. K., Appukkuttan, P., Claerhout, S., Parmar, V. S., and Van der Eycken, E. (2006) Copper(II)‐ Mediated Cross‐Coupling of Arylboronic Acids and 2(1H)‐Pyrazinones Facilitated by Microwave Irradiation with Simultaneous Cooling, Org. Lett. 8 , 1863‐1866.

[10] Bagley, M. C., Lubinu, M. C., and Mason, C. (2007) Regioselective Microwave‐Assisted Synthesis of Substituted Pyrazoles from Ethynyl Ketones, Synlett , 704‐708.

[11] Hosseini, M., Stiasni, N., Barbieri, V., and Kappe, C. O. (2007) Microwave‐Assisted Asymmetric Organocatalysis. A Probe for Nonthermal Microwave Effects and the Concept of Simultaneous Cooling, J. Org. Chem. 72 , 1417‐1424.

[12] Leadbeater, N. E., Stencel, L. M., and Wood, E. C. (2007) Probing the effects of microwave irradiation on enzyme‐catalysed organic transformations: the case of lipase‐catalysed transesterification reactions, Org. Biomol. Chem. 5 , 1052‐1055.

[13] Merritt, E. A., and Bagley, M. C. (2007) Holzapfel‐Meyers‐Nicolaou Modification of the Hantzsch Thiazole Synthesis, Synthesis , 3535‐3541.

[14] Singh, B. K., Mehta, V. P., Parmar, V. S., and Van der Eycken, E. (2007) Palladium‐catalyzed copper(i)‐ mediated cross‐coupling of arylboronic acids and 2(1H)‐pyrazinones facilitated by microwave irradiation with simultaneous cooling, Org. Biomol. Chem. 5 , 2962‐2965.

[15] Ferlin, N., Duchet, L., Kovensky, J., and Grand, E. (2008) Microwave‐assisted synthesis of long‐chain alkyl glucopyranosides, Carbohydr. Res. 343 , 2819‐2821.

[16] Shimizu, H., Yoshimura, Y., Hinou, H., and Nishimura, S.‐I. (2008) A new glycosylation method part 3: study of microwave effects at low temperatures to control reaction pathways and reduce byproducts, Tetrahedron 64 , 10091‐10096.

[17] Singh, B. K., Parmar, V. S., and Van der Eycken, E. (2008) Rapid Palladium‐Catalyzed C3‐Arylation of 2(1H)‐Pyrazinones: Effect of Simultaneous Cooling on Microwave‐Assisted Reactions on Solid Support, Synlett , 3021‐3025.

[18] Young, D. D., Nichols, J., Kelly, R. M., and Deiters, A. (2008) Microwave Activation of Enzymatic Catalysis, J. Am. Chem. Soc. 130 , 10048‐10049.

[19] Al‐Mousawi, S., and El‐Apasery, M. (2009) Azolyacetones as Precursors to Indoles and Naphthofurans Facilitated by Microwave Irradiation with Simultaneous Cooling, Molecules 14 , 2976‐2984.

[20] Bereman, M. S., Young, D. D., Deiters, A., and Muddiman, D. C. (2009) Development of a Robust and High Throughput Method for Profiling N‐Linked Glycans Derived from Plasma Glycoproteins by NanoLC−FTICR Mass Spectrometry, J. Proteome Res. 8 , 3764‐3770.

[21] Edwards, W. F., Young, D. D., and Deiters, A. (2009) The effect of microwave irradiation on DNA hybridization, Org. Biomol. Chem. 7 , 2506‐2508.

[22] Guryanov, I., Montellano Lopez, A., Carraro, M., Da Ros, T., Scorrano, G., Maggini, M., Prato, M., and Bonchio, M. (2009) Metal‐free, retro‐cycloaddition of fulleropyrrolidines in ionic liquids under microwave irradiation, Chem. Commun. , 3940‐3942.

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung.

Aufklappen für Details zu Ihrer Einwilligung

[23] Landge, S., and Török, B. (2009) Highly Enantioselective Organocatalytic Addition of Ethyl Trifluoropyruvate to Ketones with Subzero Temperature Microwave Activation, Catal. Lett. 131 , 432‐439.

[24] Radi, M., Rao, J. R., Jha, A. K., and Chu, C. K. (2009) A Convergent Approach for the Synthesis of Ara‐ Neplanocin a Analogues Under Subzero Microwave Assisted Conditions, Nucleosides, Nucleotides Nucleic Acids 28 , 504‐518.

[25] Wang, A., Wang, M., Wang, Q., Chen, F., Zhang, F., Li, H., Zeng, Z., and Xie, T. (2011) Stable and efficient immobilization technique of aldolase under consecutive microwave irradiation at low temperature, Bioresour. Technol. 102 , 469‐474.

[26] Lopez‐Andarias, J., Guerra, J., Castaneda, G., Merino, S., Cena, V., and Sanchez‐Verdu, P. (2012) Development of Microwave‐Assisted Reactions for PAMAM Dendrimer Synthesis, Eur. J. Org. Chem. ,2331‐2337.

[27] Nicho, M. E., Garcia‐Escobar, C. H., Hernandez‐Martinez, D., Linzaga‐Elizalde, I., and Cadenas‐Pliego, G. Microwave‐assisted synthesis of poly(3‐hexylthiophene) via direct oxidation with FeCl3, Mater. Sci. Eng., B , Ahead of Print.

* U. Sengutta, CEM GmbH, 47475 Kamp-Lintfort