English China

Deep Learning erkennt molekulare Muster von Krebs

„Google“ für Tumore?

Seite: 2/2

Anbieter zum Thema

Wirkstoffentwicklung verbessern

Um die Wirkung potenzieller Medikamente zu untersuchen, passte das Team, dem auch Sikander Hayat von der Bayer AG angehörte, das Programm etwas an: Es kann nun auch Zelllinien analysieren, die Tumoren entnommen bzw. im Labor gezüchtet wurden. Auf molekularer Ebene unterscheiden sich Zelllinien jedoch auf vielerlei Weise von echten Tumoren.

Um das Ausmaß der Unterschiede abzuschätzen, verglich das Team mithilfe von maui Zelllinien, an denen derzeit Wirkstoffe gegen Darmkrebs getestet werden, mit Zellen aus echten Tumoren. Knapp die Hälfte der Zelllinien war demnach enger mit anderen Zelllinien verwandt als mit echten Tumoren. Nur eine Handvoll Linien ähneln den verschiedenen Arten kolorektaler Karzinome am meisten.

Die Suche nach neuen Medikamenten verlässt sich zwar längst nicht nur auf Zelllinien, diese Erkenntnis könnte aber dazu beitragen, das volle Potenzial der Zelllinienforschung besser auszuschöpfen. Möglicherweise lässt sie sich auch für andere Arten der Wirkstofferprobung anpasse, die auf genetischen Informationen basiert.

„Google“ für Tumore

Nachdem die Deep-Learning-Plattform für Darmkrebs umfassend getestet wurde, könnten damit auch Daten neuer Patient*innen analysiert werden. „Man kann es sich wie eine Suchmaschine vorstellen“, sagt Akalin.

Ein Arzt oder eine Ärztin könnte die genetischen Daten eines Erkrankten in maui einspeisen, um die beste Übereinstimmung zu finden und so den Tumor schnell und genau zu klassifizieren. Die Plattform könnte dann Medikamente empfehlen, die bei ähnlichen Tumoren gut angeschlagen haben. So könnte sie voraussagen helfen, ob eine bestimmte Therapie etwas nützt und wie die Überlebensrate sind.

Derzeit ist dies nur in einem akademischen Umfeld möglich und wenn die ÄrztInnen zuvor alle vorhandenen klinischen Protokolle ausprobiert hatten. Es sei ein langer Weg bis zur Zulassung eines Tests oder Systems für den klinischen Einsatz, sagt Akalin. Das Team wägt mit der Unterstützung des Digital Health Accelerator Programms des Berlin Institute of Health das Potenzial für die Vermarktung des Systems ab. Darüber hinaus entwickeln sie maui für die Anwendung auf andere Krebsarten weiter.

Originalpublikation: Jonathan Ronen et al. (2019): Evaluation of colorectal cancer subtypes and cell lines using deep learning, Life Science Alliance, DOI: 10.26508/lsa.201900517

* L. Petersen: Max-Delbrück-Centrum für molekulare Medizin, 13125 Berlin

(ID:46279239)