Das denkbar einfachste Molekül besteht aus zwei Protonen, die von einem Elektron zusammengehalten werden. Forscher der Universität Düsseldorf haben H2+ nun erstmals mittels Laserspektroskopie untersucht und so bislang theoretische Vorhersagen erstmals mit Messwerten bestätigt. Die Experimente könnten auch bei fundamentalen Forschungsfragen von Bedeutung sein, etwa warum im Universum Materie der Antimaterie überwiegt.
Die Autoren der Veröffentlichung in Nature Physics (v.l.): Dr. Soroosh Alighanbari, Magnus Schenkel und Prof. Stephan Schiller Ph.D.
(Bild: HHU / Ulrich Rosowski)
Eines der ersten Moleküle, die nach dem Urknall entstanden, ist H2+. Es besteht aus den grundlegendsten Bausteinen, die sehr früh im Universum gebildet wurden: zwei Wasserstoffkernen (den Protonen) und einem Elektron. Das Elektron bindet die beiden Protonen zu einem Molekül. Im Zusammenspiel von Teilchenbewegungen und Kräften können die beiden Protonen schwingen und rotieren.
Trotz oder gerade wegen seiner relativen Einfachheit blieb H2+ bislang relativ unerforscht. Denn aufgrund der gleichen Ladung und Masse der beiden Atomkerne absorbiert und emittiert das Molekül fast keine sichtbare und infrarote Strahlung. Entsprechend kann es fast nicht mit Teleskopen beobachtet werden, sodass Astronomen H2+ nur sehr schwer im Universum aufspüren und erforschen können.
Die verschiedenen Schwingungs- und Rotationszustände des Moleküls entsprechen bestimmten Anregungsenergien. Wechselt ein Molekül zwischen zwei solcher Zustände, absorbiert bzw. emittiert es einen charakteristischen Energiebetrag, ein Photon. Dies ist ein Quantum elektromagnetischer Strahlung mit einer bestimmten Frequenz. In früheren Laborexperimenten wurden diese Energieunterschiede zwischen bestimmten Schwingungs- und Rotationszuständen von H2+ meist indirekt gemessen. In keinem dieser Experimente kamen Laser zum Einsatz.
Ein Forscherteam vom Institut für Experimentalphysik der Heinrich-Heine-Universität Düsseldorf (HHU) hat nun erstmals direkt untersucht, wie das H2+-Molekül mithilfe von Laserlicht zu Rotationen und Schwingungen angeregt werden kann. Doktorand Magnus Schenkel entwickelte ein weltweit einzigartiges Lasersystem, mit dem der Übergang zwischen verschiedenen Rotations-Schwingungszuständen angeregt werden kann. Das Lasersystem ist besonders anspruchsvoll, da es monochromatische – also sehr frequenzscharfe – Laserstrahlung im Infrarotbereich bei 2,4 Mikrometer Wellenlänge mit hoher Leistung erfordert.
Ziel der Düsseldorfer Physiker war es, die Frequenz der benötigten Strahlungsquanten möglichst präzise zu messen. In ihren Experimenten erzielten sie eine bisher unerreichte Messgenauigkeit. Ihre Messungen ergaben einen Frequenzwert, der mit den theoretischen Vorhersagen übereinstimmt. Wesentlich war dabei, dass die Physiker die zu untersuchenden Moleküle in einer Falle speicherten, in der sie ein weiterer Laser auf eine Temperatur nahe des absoluten Nullpunkts kühlt.
Physikalische Konstanten im Test
Die genaue Messung der Rotations- und Schwingungsenergie von H2+ im Zusammenspiel mit ihrer theoretischen Berechnung hat auch eine fundamentalere Anwendungsmöglichkeit: Durch sie können die grundlegenden physikalische Gesetze getestet werden, die für die Wechselwirkung zwischen Teilchen verantwortlich sind. Denn auf diesen Gesetzen fußt die theoretische Berechnung der Energien.
Darüber hinaus hängen die Energien von H2+ von fundamentalen Konstanten der Physik ab, etwa vom Massenverhältnis von Proton zu Elektron. Eine sorgfältige Messung der Energien ermöglicht es daher, die physikalischen Konstanten zu bestimmen. Dies ist nun dem Team um Prof. Stephan Schiller mithilfe der Laserspektroskopie gelungen. Das Massenverhältnis wurde mit einer relativen Genauigkeit Unsicherheit von 3×10-8 bestimmt. Zwar ist das nicht so genau wie mit alternativen Methoden, aber die erfolgte Messung ist nur der erste Schritt.
Warum es so schwierig ist, H2+ zu spektroskopieren
Der Unterschied zwischen HD+ und H2+ besteht darin, dass HD+ ein elektrisches Dipolmoment besitzt, welches H2+ fehlt. Für die Spektroskopie von H2+ nutzte die Düsseldorfer Arbeitsgruppe daher Übergänge mit elektrischem Quadrupolmoment. Deren Übergangsrate ist im Vergleich zu Übergängen mit elektrischem Dipolmoment sehr viel kleiner. Die Physiker lösten dieses Problem, indem sie den leistungsstarken Laser einsetzten.
Dem Missverhältnis von Materie und Antimaterie nachgehen
In der Zukunft wollen die Physiker ihre Messergebnisse noch weiter verbessern. „Wir haben das Potenzial unseres Ansatzes mit einem ‚Cousin‘ von H2+ getestet, dem Molekül HD+, mit dem wir viel schneller vorgehen können.“, sagt Dr. Soroosh Alighanbari, einer der Autoren der Studie. Bei HD+ ist ein Proton durch ein Deuteron ersetzt ist, was das Molekül spektroskopisch leichter zugänglich macht. „Mit unserer Apparatur können wir tatsächlich noch präzisere Messungen durchführen, was wir demnächst mit H2+ erneut versuchen wollen.“
Über die ultrapräzise Spektroskopie von Schwingungsübergängen in H2+ eröffnet sich darüber hinaus eine noch weitreichendere Perspektive, um die grundlegenden Grenzen der Physik zu erforschen. „Unser aktuelles Ergebnis ist der allererste Schritt hin zu einem präzisen Vergleich des Verhaltens von Materie und von Antimaterie: Wir würden H2+ und sein Antimaterie-Gegenstück spektroskopieren und so nach winzigen, möglicherweise existierenden Differenzen in deren Schwingungsenergien suchen, sagt Gruppenleiter Schiller. „Solche Messungen können von Bedeutung sein, um zu verstehen, warum unser Universum voller Materie ist, aber kaum Antimaterie enthält.“
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.