Kunststoffe wie PET haben einen eher schlechten Ruf als Wegwerfprodukt. Dabei lassen sich so viel mehr Dinge aus ihnen machen als nur Plastikflaschen. Diamanten zum Beispiel: Indem Forscher die Bedingungen im Inneren von Eisplaneten wie Uranus und Neptun simulieren, erzeugen sie aus einer PET-Folie Nanodiamanten. Diese könnten in verschiedensten technischen Anwendungen genutzt werden.
Im Experiment wurde eine dünne Folie aus simplem PET-Plastik mit einem Laser beschossen. Die starken Laserblitze, die auf die folienartige Materialprobe trafen, erhitzten diese kurzzeitig bis zu 6.000 °C und erzeugten damit eine Schockwelle, die die Materie für einige Nanosekunden auf das Millionenfache des Atmosphärendrucks komprimierte. Dabei entdeckten Forscher, dass sich unter dem Extremdruck winzige Diamanten bildeten, so genannte Nanodiamanten.
(Bild: Blaurock / HZDR)
Dresden, Rostock, Palaiseau,/Frankreich – Die Verhältnisse im Inneren von Eisplaneten wie Neptun und Uranus sind extrem: Es herrschen Temperaturen von mehreren tausend Grad Celsius, der Druck ist millionenfach größer als in der Erdatmosphäre. Dennoch lassen sich solche Zustände im Labor kurzzeitig simulieren: Starke Laserblitze treffen auf eine folienartige Materialprobe, erhitzen sie für einen Wimpernschlag auf bis zu 6.000 °C und erzeugen eine Schockwelle, die die Materie für einige Nanosekunden auf das Millionenfache des Atmosphärendrucks komprimiert. „Bislang haben wir solche Versuche mit Folien aus Kohlenwasserstoffen gemacht“, sagt Dominik Kraus, Physiker am Helmholtz-Zentrums Dresden-Rossendorf (HZDR) sowie Professor an der Universität Rostock. „Dabei konnten wir feststellen, dass sich unter dem Extremdruck winzige Diamanten bilden, so genannte Nanodiamanten.“
Allerdings ließ sich mit diesen Folien das Planeteninnere bisher nur ansatzweise simulieren. Denn Eisplaneten enthalten nicht nur Kohlenstoff und Wasserstoff, sondern auch Unmengen Sauerstoff. Bei der Suche nach einem geeigneten Folienmaterial fiel die Wahl auf einen Allerweltsstoff: PET – jenem Kunststoff, aus dem simple Plastikflaschen bestehen.
Bei PET liegen Kohlenstoff, Wasserstoff und Sauerstoff in einem guten Verhältnis vor, um die Geschehnisse in Eisplaneten zu simulieren
Prof. Dr. Dominik Kraus, Physiker am Helmholtz-Zentrums Dresden-Rossendorf (HZDR)
Die Versuche führte das Team am SLAC National Accelerator Laboratory in Kalifornien durch. Dort steht mit der Linac Coherent Light Source (LCLS) ein starker, beschleunigerbasierter Röntgenlaser. Mit ihm lässt sich analysieren, was beim Auftreffen von intensiven Laserblitzen auf eine PET-Folie passiert. Dabei setzten die Fachleute zwei Messverfahren gleichzeitig ein: Per Röntgenbeugung prüften sie, ob sich Nanodiamanten bildeten. Und mit der so genannten Kleinwinkelstreuung konnten sie beobachten, wie schnell und auf welche Größe die Diamanten wuchsen.
Das Ergebnis: „Durch seinen Einfluss hat der Sauerstoff die Trennung von Kohlenstoff und Wasserstoff beschleunigt und damit die Entstehung der Nanodiamanten gefördert“, berichtet Kraus. „Dadurch konnten die Kohlenstoffatome besser zusammenfinden und Diamanten bilden.“ Das erhärtet die Vermutung, dass es im Inneren von Eisriesen buchstäblich Diamanten regnet. Die Resultate dürften nicht nur für Uranus und Neptun relevant sein, sondern auch für unzählige weitere Planeten in unserer Galaxis. Denn hielt man früher solche Eisriesen für rare Exoten, scheint mittlerweile klar, dass es sich um die häufigste Planetenform außerhalb des Sonnensystems handeln dürfte.
Außerdem stieß das Team auf einen weiteren Hinweis: Gemeinsam mit den Diamanten sollte auch Wasser entstehen – allerdings in einer ungewöhnlichen Variante: „Es sollte sich so genanntes superionisches Wasser gebildet haben“, vermutet Kraus. „Dabei formen die Sauerstoffatome ein Kristallgitter, in dem sich Wasserstoffkerne frei bewegen.“ Da die Kerne elektrisch geladen sind, kann superionisches Wasser elektrische Ströme leiten und so zur Bildung des Magnetfelds der Eisriesen beitragen. Allerdings konnte die Arbeitsgruppe bei ihren Experimenten die Existenz von superionischem Wasser in der Mischung mit Diamanten noch nicht zweifelsfrei belegen. Das soll künftig in enger Zusammenarbeit mit der Universität Rostock am European XFEL in Hamburg geschehen, dem stärksten Röntgenlaser der Welt.
Für Schleifmittel, Quantensensoren und mehr
Neben diesen grundlegenden Erkenntnissen eröffnet das neue Experiment auch Perspektiven für eine technische Anwendung – die gezielte Herstellung von nanometerkleinen Diamanten. Bereits heute werden solche Nanodiamanten in Schleif- und Poliermitteln verwendet. Künftig sollen sie als hochempfindliche Quantensensoren, medizinische Kontrastmittel sowie effiziente Reaktionsbeschleuniger etwa zur Spaltung von CO2 dienen. „Bisher werden solche Diamanten hauptsächlich per Sprengstoff-Detonation hergestellt“, erläutert Kraus. „Mithilfe von Laserblitzen könnten sie sich künftig deutlich sauberer fertigen lassen.“
Die Vision: Ein Hochleistungslaser feuert zehnmal pro Sekunde Lichtblitze auf eine PET-Folie, die im Zehntel-Sekunden-Takt durch den Strahl gerastert wird. Die bei der Reaktion entstehenden Nanodiamanten fliegen wie Geschosse aus der Folie heraus und landen in einem Auffangbecken gefüllt mit Wasser. Dort werden sie abgebremst und können anschließend gefiltert und regelrecht geerntet werden. Der wesentliche Vorteil des Verfahrens gegenüber der Produktion per Sprengstoff: „Damit ließen sich Nanodiamanten gezielt maßschneidern, etwa was ihre Größe oder auch eine Dotierung mit Fremdatomen betrifft“, betont Kraus. „Denn mit dem Röntgenlaser besitzen wir ein Labor-Werkzeug, mit dem sich das Größenwachstum der Diamanten genau kontrollieren lässt.“
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.
Originalpublikation: Z. He, M. Rödel, J. Lütgert, A. Bergermann, M. Bethkenhagen, D. Chekrygina, T.E. Cowan, A. Descamps, M. French, E. Galtier, A.E. Gleason, G.D. Glenn, S.H. Glenzer, Y. Inubushi, N.J. Hartley, J.-A. Hernandez, B. Heuser, O.S. Humphries, N. Kamimura, K. Katagiri, D. Khaghani, H.J. Lee, E.E. McBride, K. Miyanishi, B. Nagler, B. Ofori-Okai, N. Ozaki, S. Pandolfi, C. Qu, D. Ranjan, R. Redmer, C. Schoenwaelder, A.K. Schuster, M.G. Stevenson, K. Sueda, T. Togashi, T. Vinci, K. Voigt, J. Vorberger, M. Yabashi, T. Yabuuchi, L.M.V. Zinta, A. Ravasio, D. Kraus: Diamond formation kinetics in shock-compressed C-H-O samples recorded by small-angle X-ray scattering and X-ray diffraction, in Science Advances, 2 Sep 2022, Vol 8, Issue; DOI: 10.1126/sciadv.abo0617