Die chemische Zusammensetzung eines Objektes zu analysieren, ist an sich schon ein komplexes Unterfangen. Wenn das Objekt auch noch rasend durchs All fliegt, ist es eine besondere Herausforderung. Dennoch ist Forschern aus Bern nun gelungen, die chemische Zusammensetzung eines Kometen in bisher unerreichter Detailtiefe zu entschlüsseln – und sogar Aussagen über dessen Duft zu machen.
Daten vom Kometen „Chury“, gesammelt als dieser den sonnennächsten Punkt seiner Umlaufbahn passierte, zeigen eine Vielzahl unerwarteter Moleküle, die von den abgestoßenen Staubteilchen sublimieren. Im Durchschnitt gleicht dieses komplexe organische Material jenem in Meteoriten und in Saturns Ringregen, was auf einen gemeinsamen präsolaren Ursprung hindeutet.
(Bild: Univresität Bern)
Bern/Schweiz – Kometen sind Fossilien aus den Tiefen unseres Sonnensystems und Überbleibsel der Entstehung von Sonne, Planeten und Monden. Einem Team unter der Leitung der Chemikerin Dr. Nora Hänni vom Physikalischen Institut der Universität Bern, Abteilung Weltraumforschung und Planetologie, ist es nun gelungen, erstmals eine Reihe komplexer organischer Moleküle bei einem Kometen zu identifizieren. Dies berichten die Forschenden in einer Ende Juni veröffentlichten Studie.
Ergänzendes zum Thema
Rosetta-Mission
Das Massenspektrometer Rosina war ein Schlüsselexperiment der Rosetta-Mission der Europäischen Weltraumorganisation ESA. Die Rosetta-Sonde hat den Kometen 67P/Churyumov-Gerasimenko, kurz Chury genannt, während mehr als zwei Jahren im Detail untersucht und dabei sogar zum ersten Mal überhaupt ein Landemodul auf der Oberfläche eines Kometen abgesetzt. Das Massenspektrometer Rosina (Rosetta-Orbiter Spektrometer für Ionen- und Neutralgasanalyse) wurde unter Leitung der Universität Bern entwickelt, gebaut, getestet und mittels Telekommandos beim Kometen betrieben. Es konnte viele Bestandteile der Atmosphäre von Chury nachweisen – einen Großteil davon sogar zum ersten Mal bei einem Kometen. Rosina trug so maßgeblich dazu bei, neue Erkenntnisse zur Entstehung unseres Sonnensystems zu gewinnen. Die aktive Phase der Mission ging 2016 mit dem kontrollierten Absturz der Rosetta-Sonde auf die Oberfläche des Kometen Chury zu Ende. Seither werden in Bern aber noch über zwei Millionen Datensätze von Rosina ausgewertet und für Forscher weltweit zur Verfügung gestellt.
Neuer Komet – neuer Versuch
Mitte der 1980er Jahre schickten die großen Raumfahrtagenturen eine Flotte von Raumfahrzeugen aus, um am Halleyschen Kometen vorbeizufliegen. An Bord befanden sich mehrere Massenspektrometer, die die chemische Zusammensetzung sowohl der Kometenkoma untersuchten – der dünnen Atmosphäre, die durch die Sublimation von Kometeneis in der Nähe der Sonne entsteht. Aber auch Staubpartikel des Kometen wurden analysiert. Die von diesen Instrumenten gesammelten Daten verfügten jedoch nicht über die erforderliche Auflösung, um eine eindeutige Bestimmung der Zusammensetzung des Kometen zu ermöglichen.
Mehr als 30 Jahre später hat das hochauflösende Massenspektrometer „Rosina“ in den Jahren 2014 bis 2016 Daten über den Kometen Chury gesammelt (vollständige Bezeichnung: 67P/Churyumov-Gerasimenko). Diese Daten gestatten den Forschern nun zum ersten Mal, Licht in den komplexen organischen Haushalt von Chury bringen. Rosina ist die Abkürzung für „Rosetta Orbiter Sensor for Ion and Neutral Analysis“, ein Instrument unter der Leitung der Universität Bern an Bord der ESA-Raumsonde Rosetta.
Das Geheimnis lag im Staub verborgen
Als Chury sein Perihel erreichte, den sonnennächsten Punkt, wurde er sehr aktiv. Das sublimierende Kometeneis erzeugte einen „Ausfluss“, der Staubpartikel mit sich zog. Die abgestoßenen Partikel wurden durch die Sonneneinstrahlung auf Temperaturen aufgeheizt, die über denen liegen, die typischerweise auf der Kometenoberfläche herrschen. Dadurch gelangten größere und schwerere Moleküle in die Gasphase und konnten vom hochauflösenden Massenspektrometer Rosina-DFMS (Rosina-Double Focusing Mass Spectrometer) gemessen werden.
„Aufgrund der extrem staubigen Bedingungen musste sich die Raumsonde auf eine sichere Distanz von etwas mehr als 200 km über der Kometenoberfläche zurückziehen, damit die Instrumente unter stabilen Bedingungen arbeiten konnten“, erklärt die Astrophysikerin Prof. em. Dr. Kathrin Altwegg, Hauptverantwortliche für das Rosina-Instrument und Mitautorin der neuen Studie. So war es möglich Teilchen aufzuspüren, die zuvor im Kometenstaub verborgen geblieben waren.
Die Interpretation der Rosina-Daten ist eine Herausforderung. Dem Berner Forschungsteam ist es jedoch gelungen, eine Reihe komplexer organischer Moleküle zu identifizieren, die bisher noch nie in einem Kometen nachgewiesen wurden. „Wir haben zum Beispiel Naphthalin gefunden, das für den charakteristischen Geruch von Mottenkugeln verantwortlich ist“, erklärt die Chemikerin des Rosina-Teams und Leiterin der Studie Dr. Nora Hänni. „Auch fanden wir Benzoesäure, ein natürlicher Bestandteil von Weihrauch. Und wir identifizierten Benzaldehyd, das weithin verwendet wird, um Lebensmitteln ein Mandelaroma zu verleihen und viele weitere Moleküle.“ Diese komplexen organischen Stoffe würden den Geruch von Chury offenbar noch vielfältiger als bisher angenommen machen, aber auch angenehmer, sagt Hänni.
Abgesehen von wohlriechenden Molekülen wurden im organischen Haushalt von Chury auch viele mit so genannter präbiotischer Funktionalität identifiziert (z. B. Formamid). Solche Verbindungen sind wichtige Zwischenstufen bei der Synthese von Biomolekülen (z. B. Zucker oder Aminosäuren). „Es scheint deshalb wahrscheinlich, dass einschlagende Kometen – als wesentliche Lieferanten von organischem Material – auch zur Entstehung von kohlenstoffbasiertem Leben auf der Erde beigetragen haben“, erklärt Hänni.
Kometen als Reservoir organischen Materials
Neben der Identifizierung einzelner Moleküle führten die Forscher auch eine detaillierte Charakterisierung des gesamten Ensembles komplexer organischer Moleküle im Kometen Chury durch, um ihn in den größeren Kontext des Sonnensystems einordnen zu können. Parameter wie die durchschnittliche Summenformel dieses organischen Materials oder die durchschnittliche Bindungsgeometrie der darin enthaltenen Kohlenstoffatome sind für diverse wissenschaftliche Bereiche von Bedeutung, von der Astronomie bis zur Sonnensystemforschung.
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.
„Es hat sich herausgestellt, dass der komplexe organische Haushalt von Chury im Durchschnitt identisch ist mit dem löslichen Teil der organischen Materie von Meteoriten“, erklärt Chemikerin Hänni. „Starke Ähnlichkeiten gibt es – abgesehen von der relativen Menge der Wasserstoffatome – auch zum organischen Material, das auf Saturn von seinem innersten Ring herabregnet, wie es mit dem INMS-Massenspektrometer an Bord der NASA-Raumsonde Cassini nachgewiesen wurde.“
Prof. Dr. Susanne Wampfler, Astrophysikerin am Center for Space and Habitability (CSH) der Universität Bern und Mitautorin der Publikation, ergänzt: „Wir finden nicht nur Ähnlichkeiten zu den organischen Reservoirs im Sonnensystem, sondern viele der organischen Moleküle von Chury sind auch in Molekülwolken, den Geburtsstätten neuer Sterne, vorhanden. Unsere Ergebnisse sind konsistent mit dem Szenario eines gemeinsamen präsolaren Ursprungs der verschiedenen organischen Reservoirs des Sonnensystems und bestätigen, dass Kometen tatsächlich Material aus der Zeit lange vor der Entstehung unseres Sonnensystems enthalten.“