English China

Neuronentypen im Gehirn Erster Atlas unseres Gehirns veröffentlicht

Redakteur: Dipl.-Chem. Marc Platthaus

Ein internationales Wissenschaftler-Team hat die Eigenschaften verschiedener Neuronentypen im motorischen Kortex der Gehirne von Mäusen, Affen und Menschen untersucht. Hieraus haben sie nun erstmals einen Gehirn-Zellatlas erstellt.

Firmen zum Thema

Diese „Landkarte der Neuronentypen“ zeigt symbolisch die Ordnung der Nervenzellen im motorischen Kortex der Maus: Die großen genetischen Familien sind klar voneinander zu unterscheiden, wie Länder auf einer Karte. Innerhalb jeder Familie zeigen die Neuronen – hier abgebildet als weiße Punkte - jedoch mit Blick auf ihre wichtigsten Eigenschaften fortlaufende Veränderungen.
Diese „Landkarte der Neuronentypen“ zeigt symbolisch die Ordnung der Nervenzellen im motorischen Kortex der Maus: Die großen genetischen Familien sind klar voneinander zu unterscheiden, wie Länder auf einer Karte. Innerhalb jeder Familie zeigen die Neuronen – hier abgebildet als weiße Punkte - jedoch mit Blick auf ihre wichtigsten Eigenschaften fortlaufende Veränderungen.
(Bild: Franz-Georg Stämmele und Dmitry Kobak/ Universität Tübingen)

Tübingen – Schon seit mehr als 100 Jahren erforschen Neurowissenschaftler die Eigenschaften der Neuronen im Gehirn. Eine der zentralen Fragen dabei ist, inwiefern sich die verschiedenen Nervenzelltypentypen voneinander unterscheiden und welchen Einfluss das auf die Hirnaktivität hat. Dem BRAIN Initiative Cell Census Network (BICCN), einer internationalen Forschungskollaboration, an der auch Forscher der Universität Tübingen beteiligt sind, ist jetzt ein Durchbruch gelungen: Sie haben einen Zellatlas erstellt, der einen Überblick über die verschiedenen Neuronentypen und ihre jeweiligen Eigenschaften im motorischen Kortex liefert, der Hirnregion, die unsere Bewegungsabläufe steuert ‒ und zwar im Gehirn von Mäusen, Affen und Menschen. Der Atlas wurde am 6. Oktober in einer Nature-Sonderausgabe veröffentlicht.

Umfassende Definition von Neuronentypen

Das Forschungsnetzwerk BICCN hatte sich zum Ziel gesetzt, die Neuronentypen im motorischen Kortex so umfassend wie möglich zu beschreiben. Dabei sollte ein Katalog auf Grundlage eines „Zellzensus“ entstehen. Dieser sollte, ähnlich wie ein Bevölkerungszensus, die verschiedenen Neuronentypen definieren, und zwar inklusive ihrer spezifischen Merkmale und ihrer Verteilung im Gehirn. Mithilfe neuer experimenteller Techniken und Datenanalyseverfahren ist es den Wissenschaftlern jetzt gelungen, genetische Informationen über mehr als eine Million Zellen zu sammeln. Sie erfassten für einen Teil der Zellen ihre räumliche Lage, Form und elektrischen Eigenschaften und ermittelten ihre Verbindungen zu weiteren Neuronen in anderen Gehirnbereichen. Da die Forschenden die Zellen von Mäusen, Weißbüschellaffen und Menschen analysierten, konnten sie sogar die evolutionäre Entwicklung der verschiedenen Nervenzelltypen nachzeichnen. Das Ergebnis ist ein Zellatlas, der einen bislang nicht gekannten Überblick über den motorischen Kortex und dessen Entwicklung im Laufe der Evolution bietet.

Anatomie, Physiolgie und Transkriptom der Neuronen untersucht

Wissenschaftler der Universität Tübingen haben zu dieser Gemeinschaftsleistung eine Studie beigesteuert, in der sie die verschiedenen Zelltypen im motorischen Kortex der Maus auf Grund mehrerer Datentypen charakterisieren. Die Arbeit unter der Leitung von Philipp Berens, Professor am Forschungsinstitut für Augenheilkunde der Universität Tübingen und Sprecher des Exzellenzclusters „Maschinelles Lernen“, Prof. Andreas Tolias vom Baylor College of Medicine in Houston, Texas (USA), und Prof. Rickard Sandberg vom Karolinska Institutet in Stockholm (Schweden) liefert eine der bisher vollständigsten Beschreibungen der Vielfalt verschiedener Neuronentypen im Maushirn.

Neurowissenschaftler beschreiben Neuronen in der Regel anhand drei grundlegender Merkmale: ihre Anatomie oder wie sie unter dem Mikroskop aussehen, ihre Physiologie oder wie sie auf Reize reagieren, und ihr Transkriptom, d. h. die genetische Information, die in der Zelle tatsächlich abgelesen wird. Das Team verwendete eine neue experimentelle Technik, genannt „Patch-seq“, um eine große Datenbank mit anatomischen, physiologischen und genetischen Informationen von Zellen im motorischen Kortex der Maus zusammenzustellen.

Maschinelles Lernen unterstützte die Arbeiten

Dass die Forschenden die drei grundlegenden Eigenschaften bei über 1000 Zellen gleichzeitig messen konnten, ermöglichte ihnen ein tiefes Verständnis dafür, wie die Neuronen im motorischen Kortex miteinander in Beziehung stehen. Mit Verfahren aus dem maschinellen Lernen führten sie die anatomischen, physiologischen und genetischen Informationen zusammen und entdeckten so Beziehungen zwischen den Neuronen, die zuvor nicht bekannt waren.

Die großen genetischen Neuronenfamilien haben unterschiedliche anatomische und physiologische Eigenschaften. Aber innerhalb jeder Familie zeigen die Neuronen eine sich graduell verändernde anatomische und physiologische Vielfalt

Dr. Dmitry Kobak, zusammen mit Federico Scala vom Baylor College of Medicine Hauptautor der Studie, Universität Tübingen

In Analogie zum „Baum des Lebens“, der die Beziehungen zwischen den verschiedenen Spezies beschreibt, kamen die Forschenden zu folgendem Schluss: Die Neuronen unterliegen einer Ordnung, die auf Ebene der Familien aus verschiedenen, sich nicht überschneidenden Zweigen besteht. Innerhalb jeder Familie weisen sie jedoch mit Blick auf ihre genetischen, anatomischen und physiologischen Eigenschaften fortlaufende Veränderungen auf, so dass der „Baum der Zelltypen“ eher einem Bananenbaum als einem Olivenbaum ähnelt. Damit schlagen die Wissenschaftlerinnen und Wissenschaftler ein völlig neues Modell vor, um die Vielfalt der Neuronen im Gehirn und ihre Beziehungen zueinander zu beschreiben.

„Die Daten aus dem neuen Zellatlas unserer Forschungskooperation werden für die Neurowissenschaft eine unschätzbar wertvolle Ressource sein“, sagt Philipp Berens. „Indem wir unser Wissen aus dem maschinellen Lernen einbringen, stellen wir die Verbindung von der Genetik zur Physiologie und zur Anatomie der Neuronen her. Das kann entscheidend sein, wenn es darum geht, Krankheiten, die das Gehirn betreffen, auf Ebene der Zellen zu verstehen.“

Originalpublikation: Scala, F., Kobak, D., Bernabucci, M. et al.: Phenotypic variation of transcriptomic cell types in mouse motor cortex. Nature (2020), DOI: doi.org/10.1038/s41586-020-2907-3

(ID:47720450)