Worldwide China

Exotischer Zustand von Wasser

Schnellster Wasserkocher der Welt – 100.000 Grad in 75 billiardstel Sekunden

| Redakteur: Dr. Ilka Ottleben

Nach knapp 70 billardstel Sekunden (Femtosekunden) haben sich die Wassermoleküle bereits weitgehend in Wasserstoff (weiß) und Sauerstoff (rot) getrennt.
Nach knapp 70 billardstel Sekunden (Femtosekunden) haben sich die Wassermoleküle bereits weitgehend in Wasserstoff (weiß) und Sauerstoff (rot) getrennt. (Bild: Carl Caleman, DESY/Universität Uppsala)

Mehr zum Thema

Sei es für Tee oder Kaffee – die meisten Menschen dürften heutzutage einen Wasserkocher besitzen. Schnelle Exemplare erhitzen einen Liter Wasser in rund zweieinhalb Minuten auf 100 °C – „Lichtjahre“ verglichen mit der Rekordgeschwindigkeit, die Forscher nun erreicht haben: Per Röntgenlaser haben sie Wasser in 75 Femtosekunden von Zimmertemperatur auf 100.000 Grad Celsius aufgeheizt. Ihre Beobachtungen haben auch praktische Bedeutung für die Untersuchung biologischer und anderer Proben mit Röntgenlasern.

Hamburg, Uppsala/Schweden – Per Röntgenlaser haben Forscher Wasser in 75 Femtosekunden von Zimmertemperatur auf 100.000 Grad Celsius aufgeheizt. Der Experimentaufbau, der als schnellster Wasserkocher der Welt gelten kann, erzeugte einen exotischen Zustand des Wassers, von dem sich die Wissenschaftler neue Einblicke in die besonderen Eigenschaften der wichtigsten Flüssigkeit der Erde erhoffen. Die Beobachtungen haben auch praktische Bedeutung für die Untersuchung biologischer und zahlreicher anderer Proben mit Röntgenlasern. Das Team von Carl Caleman vom Center for Free-Electron Laser Science (CFEL) bei DESY und der Universität Uppsala in Schweden hat seine Arbeit aktuell publiziert. Eine Femtosekunde ist der milliardste Teil einer millionstel Sekunde.

Röntgenlaser: Ein neuer Weg, Wasser zu kochen

Die Forscher schossen mit dem Freie-Elektronen-Laser LCLS am US-Forschungszentrum SLAC ultrakurze und hochintensive Röntgenblitze auf einen feinen Wasserstrahl. „Das ist sicherlich nicht der übliche Weg, Wasser zu kochen“, erläutert Forschungsleiter Caleman. „Normalerweise rüttelt man quasi immer stärker und stärker an den Wassermolekülen, wenn man Wasser erhitzt.“ Auf der molekularen Ebene ist Hitze gleich Bewegung. Je heißer, desto stärker bewegen sich die Moleküle eines Stoffs. Das lässt sich beispielsweise durch Wärmeübertragung auf einer heißen Herdplatte erreichen, oder im Fall von Wasser direkter mit einem Mikrowellenofen, der die Wassermoleküle dazu anregt, im Takt der Mikrowellen zu schwingen.

„Unsere Heizung ist ganz anders“, betont Caleman. „Der energiereiche Röntgenblitz schlägt die Elektronen aus den Wassermolekülen hinaus und zerstört so die Balance der elektrischen Ladung. Die Atome spüren plötzlich eine starke abstoßende Kraft und beginnen, sich heftig zu bewegen.“ In weniger als 75 Femtosekunden – das sind 0,000 000 000 000 075 Sekunden – durchläuft das Wasser eine Phasenumwandlung von flüssig zu einem Plasma. Plasma ist ein Aggregatzustand der Materie, bei dem die Elektronen von den Atomen gelöst wurden, so dass eine Art elektrisch geladenes Gas entsteht.

Exotischer Zustand von Wasser erreicht

„Während aus dem flüssigen Wasser ein Plasma entsteht, behält es jedoch die Dichte des flüssigen Wassers bei, da die Atome noch keine Zeit hatten, sich nennenswert zu bewegen“, erläutert Ko-Autor Olof Jönsson von der Universität Uppsala. Dieser exotische Zustand kommt auf der Erde nirgends natürlicherweise vor. „Er hat ähnliche Eigenschaften wie einige Plasmen in der Sonne und im Gasriesen Jupiter, hat aber eine geringere Dichte“, sagt Jönsson. „Dabei ist er heißer als der Erdkern.“

Wasser – merkwürdig und essenziell zugleich

Die Forscher nutzten ihre Messungen, um Computersimulationen des Prozesses zu validieren. Die Messungen und Simulationen zusammen erlauben eine nähere Untersuchung dieses exotischen Zustands, um die allgemeinen Eigenschaften von Wasser besser zu verstehen. „Wasser ist eine merkwürdige Flüssigkeit, und ohne ihre besonderen Eigenschaften wären viele Dinge auf der Erde nicht so, wie sie sind – insbesondere das Leben“, betont Jönsson. Wasser besitzt verschiedene Anomalien, etwa bei der Dichte, der Wärmekapazität und der Wärmeleitfähigkeit. Unter anderem diese Anomalien sollen im Rahmen des künftigen, bei DESY geplanten Centre for Water Science (CWS; Zentrum für Wasserforschung) genauer untersucht werden, und Beobachtungen wie die jetzt vorgestellte sind für diese Vorhaben von großer Relevanz.

Untersuchung biologischer und anderer Proben mit Röntgenlasern

Abgesehen von ihrer grundlegenden Bedeutung haben die Ergebnisse auch direkte Konsequenzen für die Forschung mit Röntgenlasern, mit denen Wissenschaftler unter anderem die atomare Struktur winziger Proben untersuchen. „Sie sind für jedes Röntgenlaserexperiment mit Flüssigkeiten von Bedeutung“, betont Ko-Autor Kenneth Beyerlein vom CFEL. „Tatsächlich wird jede Probe, die man in den Röntgenstrahl hält, auf die von uns beobachtete Art und Weise zerstört. Das muss bei der Untersuchung von allen nicht-kristallinen Proben bedacht werden.“ Für Kristalle haben Forscher gezeigt, dass sich ein nutzbares Signal gewinnen lässt, bevor die Probe zerstört wird.

In dem Experiment gab es in den ersten 25 Femtosekunden nahezu keine strukturellen Veränderungen im Wasser. Nach 75 Femtosekunden sind Veränderungen dagegen bereits deutlich sichtbar. „Die Studie lässt uns besser verstehen, was mit den verschiedenen Proben geschieht“, erläutert Ko-Autor Nicusor Timneanu von der Universität Uppsala, der die verwendete Theorie zur Modellierung entscheidend miteintwickelt hat. „Die Beobachtungen sind auch wichtig für die Entwicklung von Techniken zur Untersuchung einzelner Moleküle oder anderer winziger Partikel mit Röntgenlasern.“

Originalpublikation: Kenneth R. Beyerlein, H. Olof Jönsson, Roberto Alonso-Mori , Andrew Aquila, Saša Bajt, Anton Barty, Richard Bean, Jason E. Koglin, Marc Messerschmidt, Davide Ragazzon, Dimosthenis Sokaras, Garth J. Williams, Stefan Hau-Riege, Sébastien Boutet, Henry N. Chapman, Nicusor Tîmneanu, and Carl Caleman: Ultrafast non-thermal heating of water initiated by an X-ray Free-Electron Laser; „Proceedings of the National Academy of Sciences“ (PNAS), 2018; DOI: 10.1073/pnas.1711220115

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 45302611 / Wissenschaft & Forschung)