Worldwide China

Strukturänderungen in Mineralien live verfolgt

So sieht ein Meteoriteneinschlag im Labor aus

| Redakteur: Dr. Ilka Ottleben

Meteoriteneinschläge spielen eine wichtige Rolle bei der Entstehung und Entwicklung der Erde und anderer Himmelskörper in unserem Sonnensystem. (Symbolbild)
Meteoriteneinschläge spielen eine wichtige Rolle bei der Entstehung und Entwicklung der Erde und anderer Himmelskörper in unserem Sonnensystem. (Symbolbild) (Bild: gemeinfrei)

Mehr zum Thema

Meteoriteneinschläge spielen eine wichtige Rolle bei der Entstehung und Entwicklung der Erde und anderer Himmelskörper in unserem Sonnensystem. Nun hat ein deutsch-amerikanisches Forschungsteam Meteoriteneinschläge gewissermaßen im Labor erzeugt und dabei die Strukturänderung von Mineralien durch schnelle Kompression untersucht. Das erforderte u.a., Proben mit 80.000-fachem Atmosphärendruck zusammen zu pressen.

Hamburg – Ein deutsch-amerikanisches Forschungsteam hat Meteoriteneinschläge im Labor simuliert und die resultierenden Strukturänderungen in zwei weit verbreiteten Feldspat-Mineralien live mit Hilfe von Röntgenlicht verfolgt. Die Ergebnisse der Experimente bei DESY und am Argonne National Laboratory in den USA zeigen, dass diese Änderungen der atomaren Struktur je nach Kompressionsrate bei sehr unterschiedlichem Druck auftreten können. Die aktuell veröffentlichte Studie hat Bedeutung für die Rekonstruktion von Meteoriteneinschlägen anhand von Einschlagkratern auf der Erde und auf anderen erdähnlichen Planeten.

Aufschlussreiche Einschlagkrater

Meteoriteneinschläge spielen eine wichtige Rolle bei der Entstehung und Entwicklung der Erde und anderer Himmelskörper in unserem Sonnensystem. Einschlagkrater können auch nach Hunderten bis Millionen Jahren noch Rückschlüsse auf Größe und Geschwindigkeit des jeweiligen Meteoriten sowie auf Druck und Temperatur während seines Einschlags erlauben. ForscherInnen untersuchen dazu per Röntgenkristallographie Änderungen in der inneren Struktur des Kratermaterials und vergleichen die Beobachtungen mit Ergebnissen von Hochdruckexperimenten mit demselben Material im Labor.

Große Wissenslücken bei kompressionsabhängigen Prozessen

Auf diese Weise hat sich in den vergangenen Jahrzehnten ein Klassifizierungssystem etabliert, in dem unter anderem die in der planetaren Kruste weit verbreiteten Feldspat-Mineralien Albit („Natron-Feldspat“, NaAlSi3O8), Anorthit (CaAl2Si2O8) und ihre Mischtypen der Plagioklas-Serie (NaxCa1-xAl2-xSi2+xO8) untersucht werden. Dabei dient insbesondere die Amorphisierung als Indikator, also der Verlust der geordneten Kristallstruktur. Allerdings hat sich gezeigt, dass diese Amorphisierung bei ganz unterschiedlichem Druck stattfinden kann, je nachdem, wie schnell das Material komprimiert wird.

„Diese Differenzen zeigen die großen Lücken, die noch in unserem Verständnis von kompressionsabhängigen Prozessen in Mineralien klaffen“, erläutert Forschungsleiter Lars Ehm von der Stony-Brook-Universität in New York und dem Brookhaven National Laboratory. Dieser Wissensmangel hat weitreichende Konsequenzen für die Analyse von Meteoritenkratern, aus der sich etwa Größe, Geschwindigkeit und anderen Eigenschaften des auslösenden Meteoriten nicht so genau ableiten lässt wie gewünscht.

Meteoriteneinschlag im Labor simuliert

Um diese Wissenslücken weiter zu schließen, haben die ForscherInnen um Ehm jetzt Feldspat-Proben im Labor unterschiedlich schnell zusammengepresst und dabei verfolgt, wann die Amorphisierung einsetzt. Dazu spannten sie Mikroproben in sogenannte dynamische Stempelzellen ein, deren winzige Diamantstempel sich beispielsweise mit kleinen Piezo-Aktuatoren rasch, aber kontrolliert zusammendrücken lassen. Um die Veränderungen der Kristallstruktur live verfolgen zu können, nutzte das Team unter anderem DESYs hochbrillante Röntgenlichtquelle PETRA III. Dabei kam ein empfindlicher und schneller Spezialdetektor zum Einsatz.

So sieht ein Meteoriteneinschlag im Labor aus:

Die Kristallstruktur einer Probe lässt sich aus der Art und Weise bestimmen, wie sie die Röntgenstrahlung beugt. Das charakteristische Beugungsmuster erlaubt eine atomgenaue Berechnung der inneren Struktur der Probe. Um schnelle Veränderungen beobachten zu können, sind eine kurze Belichtungszeit und ein entsprechend heller Röntgenstrahl nötig. „Dank neuer und sehr leistungsfähiger Röntgenquellen wie DESYs PETRA III, der Advanced Photon Source am Argonne National Lab oder dem europäischen Röntgenlaser European XFEL sowie großen Fortschritten in der Röntgendetektortechnik verfügen wir jetzt über die nötigen Werkzeuge, um die atomare Struktur von Materialien während schneller Kompression zu messen“, erläutert Ko-Autor Hanns-Peter Liermann, Leiter der „Extreme Conditions Beamline“ P02.2 an DESYs Röntgenquelle PETRA III, wo ein großer Teil der Experimente stattgefunden hat, insbesondere die Hochgeschwindigkeitsmessungen.

Inhalt des Artikels:

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 45721403 / Wissenschaft & Forschung)