English China
Suchen

Tieftemperaturkühlung Tiefe Temperaturen ohne Heliumkühlung erreichen

Redakteur: Dipl.-Chem. Marc Platthaus

Tiefe Temperaturen in der Region des absoluten Nullpunktes von 0 Klevin (-272,15 °C) erreicht man durch spezielle Techniken bei denen Helium als Kühlmittel verwendet wird. Da Helium aber in den letzten Jahren extrem teuer geworden ist, haben Bielefelder Physiker ein alternative Methode entwickelt, die magnetische Moleküle nutzt.

Firmen zum Thema

Das magnetische Molekül „Gd7“, das in dem Tieftemperaturexperiment eingesetzt wurde, hat die geometrische Struktur einer Schneeflocke.
Das magnetische Molekül „Gd7“, das in dem Tieftemperaturexperiment eingesetzt wurde, hat die geometrische Struktur einer Schneeflocke.
(Bild: Nature Communications)

Bielefeld – Für die Erzeugung extrem tiefer Temperaturen wird heutzutage Helium als Kühlmittel eingesetzt. Das wird jedoch immer rarer. „Das sehr seltene Helium-3-Isotop, mit dem man auch einige Zehntel Kelvin erreichen kann, ist inzwischen praktisch unbezahlbar“, sagt Professor Dr. Jürgen Schnack, Physiker an der Universität Bielefeld. Magnetische Substanzen können ebenfalls zum Kühlen eingesetzt werden. Dazu gehören vor allem paramagnetische Salze. Ihre Abkühlung hat nichts mit Druck zu tun. Sie kühlen ab, wenn das äußere Magnetfeld, das zum Beispiel von einem Elektromagneten erzeugt wird, abnimmt. Indem der Stromfluss durch die Magnetspule verringert wird, verringert sich auch das Magnetfeld und die paramagnetischen Salze kühlen ab.

Magnetische Moleküle können in großer Menge synthetisiert werden

In einem Artikel berichten die Wissenschaftler aus Saragossa, Manchester und Bielefeld über die erfolgreiche Sub-Kelvin-Kühlung mit einem alternativen Medium – den magnetischen Molekülen. Das sind Moleküle, die magnetische Ionen, zum Beispiel Gadolinium enthalten. „Sie können heutzutage in größeren Mengen erzeugt werden und sind damit im Vergleich zum Helium gut verfügbar“, sagt Professor Eric J. L. McInnes PhD, in dessen Arbeitsgruppe an der University of Manchester die untersuchten Moleküle synthetisiert wurden.

Bildergalerie

Das magnetische Molekül, mit dem seine Kollegen und er experimentiert haben, wird „Gd7“ abgekürzt. Es hat – ganz passend – die geometrische Struktur einer Schneeflocke. Wie die Computersimulationen aus der Arbeitsgruppe von Professor Schnack zeigen, kühlt es sich in einem verringernden Magnetfeld erst ab, erwärmt sich dann wieder, um sich schlussendlich im verschwindenden Magnetfeld wieder abzukühlen. „Wir waren richtig begeistert, als die theoretischen Rechnungen das komplexe Verhalten detailliert erklären konnten“, sagt der Professor für Theoretische Physik. „Im Vergleich zu paramagnetischen Salzen, bei denen die Temperatur stets mit abnehmendem Magnetfeld sinkt, zeigen Moleküle wie Gd7 ein komplexeres Verhalten. So kann man mit ihnen sehr tiefe Temperaturen erreichen, ohne das Magnetfeld vollständig abzuschalten“, berichtet Dr. Marco Evangelisti, in dessen Gruppe an der Universidad de Zaragoza die Tieftemperaturexperimente durchgeführt wurden.

Superrechner halfen bei den theoretischen Vorbetrachtungen

„Man muss wissen, dass bei solchen Simulationen mit gigantischen Matrizen, also speziellen Zahlenfeldern, gerechnet wird. Wir sind froh, dass uns in Bielefeld für diese Zwecke ein leistungsstarker Superrechner zur Verfügung steht“, sagt Schnack. Das Computersystem leistete laut dem Forscher nicht nur in dem Projekt zur magnetischen Kühlung wertvolle Arbeit, sondern auch für die Forschergruppe 945 „Nanomagnete“, die von der Deutschen Forschungsgemeinschaft (DFG) gefördert wird.

Jürgen Schnack forscht seit 15 Jahren an magnetischen Molekülen. Diese besitzen oft, aber nicht immer, ein organisches Grundgerüst aus Kohlenstoff, Wasserstoff und Sauerstoff. Darin sind spezielle Metallionen, zum Beispiel Eisenionen, eingebunden. Jedes dieser Eisenteilchen wirkt als winzige Magnetnadel, und benachbarte Teilchen wirken zusammen wie ein größerer Magnet. Das Ziel der Erforschung magnetischer Moleküle besteht darin, sie passgenau für verschiedene Zwecke zu konstruieren: als durchsichtige Magneten, als Nano-Datenspeicher oder eben als Kühlmoleküle.

Originalpublikation: Joseph W. Sharples, David Collison, Eric J. L. McInnes, Jürgen Schnack, Elias Palacios, Marco Evangelisti: Quantum signatures of a molecular nanomagnet in direct magnetocaloric measurements. Nature Communications, Oktober 2014.

(ID:43025548)