Suchen

Ammoniten Computertomographie enträtselt Geheimnisse von Ammoniten

| Autor / Redakteur: Julia Weiler* / Dipl.-Chem. Marc Platthaus

Ammoniten lebten bis vor 65 Millionen Jahren auf der Erde. Der Paläontologe Dr. René Hoffmann von der Ruhr-Universität Bochum möchte wissen, wie dieses Leben aussah. Mit hochauflösender Röntgenstrahlung untersucht er das, was heute noch von den Ammoniten zu finden ist.

Firmen zum Thema

Dr. René Hoffmann erforscht die Lebensweise von ausgestorbenen Meerestieren. Dazu nutzt er moderne bildgebende Verfahren und Vergleiche mit heute noch lebenden verwandten Arten.
Dr. René Hoffmann erforscht die Lebensweise von ausgestorbenen Meerestieren. Dazu nutzt er moderne bildgebende Verfahren und Vergleiche mit heute noch lebenden verwandten Arten.
(Bild: © RUBIN, Damian Gorczany)

Bochum – Vor rund 400 Millionen Jahren traten auf der Erde erstmals Ammoniten in Erscheinung. Gemeinsam mit den Muscheln und Schnecken gehörten sie zu den Weichtieren. Auf den ersten Blick ähneln sich Ammoniten und Schnecken dadurch, dass bei beiden der Weichkörper in einem spiralig aufgewundenen Gehäuse steckt. Aber im Gegensatz zu Schnecken mit Gehäuse, die am Meeresboden kriechen, konnten Ammoniten mithilfe ihres Gehäuses schwimmen. So lautet jedenfalls eine Theorie. Dr. René Hoffmann vom Lehrstuhl Paläontologie will wissen, ob es wirklich so war. Dafür bedient er sich einer Methode, die typischerweise in der Medizin Einsatz findet: der Computertomographie (CT). Im Gegensatz zu vielen anderen Forschern setzt er das Verfahren aber nicht nur ein, um die Struktur von Fossilien dreidimensional sichtbar zu machen, sondern auch für quantitative Analysen. Damit kann er zum Beispiel anhand der CT-Bilder das Volumen des Gehäuses bestimmen. Neben einer französischen Gruppe ist er weltweit bislang der einzige, der Kopffüßer auf diese Weise erforscht.

Bildergalerie
Bildergalerie mit 11 Bildern

Er möchte bestimmen, ob die Ammoniten mit einem gasgefüllten Gehäuse genug Auftrieb erzeugen konnten, um ihr Eigengewicht zu überwinden und sich so im Wasser frei zu bewegen – ähnlich wie der heute noch lebende Nautilus.

Wie konnten Ammoniten schwimmen?

Das Nautilusgehäuse enthält mehrere Kammern, aus denen das Tier das Wasser herauspumpt, so dass gasgefüllte Räume entstehen. Diese verleihen ihm genug Auftrieb, um zu schwimmen, ohne viel Energie aufzubringen. Auch die Ammonitengehäuse waren gekammert und könnten die gleiche Funktion erfüllt haben. Aber konnten die Tiere mit ihren Gehäusen genug Auftrieb erzeugen, um zu schwimmen? Mit seinen Kollegen berechnet René Hoffmann die Antwort auf diese Frage. Der Auftrieb ist abhängig von der Masse des Körpers, dem Volumen der verdrängten Flüssigkeit und der Dichte dieser Flüssigkeit – im Fall der Ammoniten also Meerwasser. Wie aber bestimmt man Gewicht und Volumen eines Tieres, dessen Überreste nur noch als Fossil existieren? Hoffmanns Idee: Mittels Röntgenstrahlung lässt sich die innere Struktur eines Fossils exakt rekonstruieren, ohne dass man es dafür zerstören muss. Anhand von computertomografischen Bildern sollte es möglich sein, das Volumen des Gehäuses zu bestimmen. Aus dem Volumen und der Dichte des Gehäusematerials lässt sich außerdem das Gewicht berechnen. Damit wären alle Daten über das Gehäuse vorhanden, um dessen Auftrieb zu ermitteln. Ein Wert fehlte aber noch: das Gewicht des Weichkörpers. In den Versteinerungen ist nur das Kalkgehäuse erhalten, nicht das eigentliche Tier. Neben dem gekammerten Bereich besitzt die Schale eine nicht unterteilte große Wohnkammer, in der sich der Weichkörper befand. Mit etablierten Methoden und Beobachtungen am rezenten Nautilus lässt sich die Masse des Körpers basierend auf dem Volumen der Wohnkammer schätzen.

Das Problem: Das Gewicht der Ammoniten bestimmen

Ganz so einfach, wie es klingt, war die Analyse aber nicht. Denn von den ersten Fossilien-Röntgenbildern bis hin zu verlässlichen Zahlenwerten war es ein weiter Weg. Er begann in einer Kleintierklinik. „Mein Betreuer Prof. Helmut Keupp von der Freien Universität Berlin hatte dort 2005 an der Einweihung eines neuen Computertomographen teilgenommen“, erzählt René Hoffmann. „Ganz zufällig hatte er einen versteinerten Ammoniten dabei und fragte, ob er den nicht einmal hineinlegen dürfte“. Von diesem Termin brachte Helmut Keupp Bilder des Fossils mit recht geringer Auflösung zurück, die sich nicht für eine quantitative Auswertung eigneten. Zu wenig Details waren auf den Aufnahmen zu erkennen. Ein weiteres Problem: Viele Fossilien sind mit Sediment gefüllt, oder es wachsen nachträglich Kristalle in den Hohlräumen des Gehäuses, die aus dem gleichen Material bestehen wie das Gehäuse, also Kalziumkarbonat. Auf dem Röntgenbild sind diese Ablagerungen nicht von der eigentlichen Schale zu trennen, somit ist es unmöglich, deren Gewicht zu ermitteln.

Unter bestimmten Bedingungen entstanden jedoch hohle fossile Ammoniten, nämlich wenn die Tiere schnell eingebettet wurden und dann einige Millionen Jahre unberührt blieben. „Das ist aber so selten, dass ich es in Kauf genommen habe, weltweit herumzureisen, um wenigstens ein paar Exemplare zu bekommen“, erzählt Hoffmann. In Japan und Russland hatte er Erfolg, auch wenn er sich manchmal bürokratischen Hürden geschlagen geben musste. „In Russland habe ich einen kindskopfgroßen hohlen Ammoniten aufgetan“, so der Forscher, „aber ich hatte nur eine Ausfuhrgenehmigung für sieben Kilogramm. Deswegen durfte ich ihn nicht mitnehmen.“ Schließlich wurde René Hoffmann aber auch in der Heimat fündig, genauer in Norddeutschland.

(ID:43306234)