Suchen

Helium-Isotop Hochempfindliche Detektoren vermessen Helium-3-Isotop

| Redakteur: Dipl.-Chem. Marc Platthaus

Unter Suprafluidität versteht man den Zustand einer Flüssigkeit, bei dem sie jegliche Reibung verliert. Da dies nur bei Temperaturen nahe des absoluten Nullpunktes passiert, werden zur Analyse spezielle Detektoren benötigt. Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) haben mit ihren hochempfindlichen Detektoren jetzt das Helium-3-Isotop extrem genau vermessen.

Firmen zum Thema

PTB-Squid-Sensorchip (3 x 3 mm) auf einem Chipträger. Die Squid-Chips werden ähnlich wie Computerchips in der Halbleiterindustrie hergestellt.
PTB-Squid-Sensorchip (3 x 3 mm) auf einem Chipträger. Die Squid-Chips werden ähnlich wie Computerchips in der Halbleiterindustrie hergestellt.
(Bild: PTB)

Braunschweig – Tieftemperatur-Spezialisten der PTB haben mit ihren supraleitenden Quanteninterferenzdetektoren (Squids) dazu beigetragen, dass die magnetischen Momente von Atomen des seltenen Isotopes 3He (Helium-3) extrem empfindlich gemessen werden konnten. Mithilfe dieser Sensoren wurden hochempfindliche Kernresonanzspektrometer entwickelt, die jetzt tiefe Einblicke in den Zustand der Materie bei extrem tiefen Temperaturen lieferten. Konkret sperrte die internationale Forschergruppe aus London, Ithaca (USA) und dem PTB-Institut Berlin das Helium-3 als extrem dünnen – quasi zweidimensionalen – Flüssigkeitsfilm ein. Dann konnten die Wissenschaftler mithilfe ihrer hochempfindlichen Messgeräte die Eigenschaften der Supraflüssigkeit genauer als je zuvor messen. Damit ist ihnen ein wichtiger Schritt zum Verständnis der einzigartigen Quantenflüssigkeit Helium-3 und ihrer supraflüssigen Eigenschaften gelungen.

Diese supraleitenden Quanteninterferenzdetektoren sind die empfindlichsten Sensoren, die es gibt, um extrem schwache magnetische Signale zu erfassen. Sie sind bereits Standard, um etwa in der biomedizinischen Messtechnik die Magnetfelder des menschlichen Gehirns oder des Herzens zu untersuchen. Aktueller noch ist ihr Einsatz zusammen mit anderen supraleitenden Detektoren, um extrem empfindlich Strahlung zu messen oder sogar einzelne Photonen zu detektieren. Ein ebenso wichtiges Einsatzgebiet ist dasjenige der aktuellen Studie: Seit Mitte der 90er Jahre spielen PTB-Squids eine zentrale Rolle bei einer Kooperation zwischen Wissenschaftlern der Royal Holloway University London mit der Kryosensorgruppe der PTB. Dabei entstanden besonders empfindliche Kernresonanzspektrometer für Experimente bei ultratiefen Temperaturen, um damit immer tiefere Einblicke in den Zustand der Materie bei diesen Extrembedingungen zu gewinnen. Unter anderem geht es den Forschern um die Untersuchung von Helium-3, einer einzigartigen Quantenflüssigkeit.

Helium-3 supraleitender als Helium-4

Helium-3 ist die viel seltenere Schwester von Helium-4, das man beispielsweise benötigt, um die Spulen von Magnetresonanztomografen auf Arbeitstemperatur zu bringen. Sie müssen dazu supraleitend werden, was erst bei der Temperatur des flüssigen Helium-4 von -269 °C (4 K), also ca. 4 °C über dem absoluten Nullpunkt, gelingt. Will man noch tiefer in Richtung des absoluten Nullpunkts vorstoßen, braucht man Helium-3, das in der Natur 10.000-mal seltener als Helium-4 vorkommt und für technische Zwecke künstlich in Kernreaktoren hergestellt werden muss. Und nur mit einer Mischung aus den beiden Helium-Isotopen sowie spezieller, ausgeklügelter magnetischer Kühltechnik kann man Materieproben bis auf wenige millionstel Kelvin über dem absoluten Nullpunkt abkühlen und dann mit diesen Materialien experimentieren.

Klar, dass es den Wissenschaftlern am Herzen liegt, ihr einzigartiges Kühlmittel möglichst gut kennenzulernen. Helium-4 und Helium-3 sind faszinierende Substanzen, denn sie werden bei sehr tiefen Temperaturen supraflüssig, können also ohne Reibungswiderstand fließen. Allerdings unterscheiden sich die Supraflüssigkeiten der beiden Isotope aus quantenmechanischer Sicht sehr stark, denn Helium-4-Atome sind Bosonen, Helium-3-Atome dagegen Fermionen. In Letzteren bildet sich die Supraflüssigkeit, indem sich immer zwei Atome über eine magnetische Wechselwirkung zu einem Pärchen zusammenfinden. Diese magnetischen Eigenschaften bestimmen also ganz entscheidend die Eigenschaften der Supraflüssigkeit.

(ID:39703200)