Suchen

Genetische Ursache entdeckt Ionenkanal lässt Fliegen Bilder schneller erkennen

| Autor/ Redakteur: Dorothee Barsch*, Florian Klebs* / Dipl.-Chem. Marc Platthaus

Das Facettenauge der Fliege ist eines der bekanntesten Motive aus der Insektenwelt. Doch warum können Fliegen mit diesem Sinnesorgan Bilder deutlich schneller erkennen als dies einem Menschen mit seinem Auge gelingt? Forscher der Universität Hohenheim haben dies nun mithilfe der Massenspektrometrie auf genetischer Ebene analysiert.

Firmen zum Thema

Eine Fruchtfliege (Drosophila melanogaster). Gut erkennbar: das große Facettenauge.
Eine Fruchtfliege (Drosophila melanogaster). Gut erkennbar: das große Facettenauge.
(Bild: Universität Hohenheim / Olaf Voolstra)

Stuttgart – Autofahrer kennen das Problem: Bei schnellem Wechsel zwischen Hell und Dunkel, zum Beispiel am Ende eines Tunnels oder im flickernden Halbschatten einer Allee, braucht das Auge einen Moment, um sich anzupassen. Es fällt schwer, Objekte in der Umgebung deutlich auszumachen, und die Reaktionszeit verzögert sich.

Fliegen lösen Bildreize normalerweise deutlich schneller auf als Menschen: Sie können Bildreize mit einer Frequenz von bis zu 300 Hertz wahrnehmen, beim Menschen sind es nur bis zu 100 Hertz. „Im Kino könnten Fliegen die einzelnen Bilder des Films erkennen“, verdeutlicht Prof. Dr. Armin Huber vom Fachgebiet für Biosensorik der Universität Hohenheim den Unterschied.

Doch auch Fliegen brauchen bei wechselnden Lichtverhältnissen einige Sekunden zur Anpassung. Für diese Anpassung, so waren sich Forscher der Universität Hohenheim und der Hebrew University of Jerusalem einig, sorgt ein Schalter auf Zellebene. Nun ist es ihnen gelungen, diesen Schalter zu finden.

Phosphatgruppe sorgt für schnelle Bildverarbeitung

Ihre Theorie belegten die Forscher anhand von Sehzellen der Fruchtfliege Drosophila melanogaster, deren Facettenauge aus ca. 800 Einzelaugen besteht. Mithilfe des Massenspektrometers in der neuen Core Facility der Universität Hohenheim untersuchte das Forschungsteam diese Sehzellen und belegt: Der Schalter befindet sich am so genannten TRP-Kanal, einem Durchlass an der Zellmembran.

Durch Öffnen und Schließen reguliert der Kanal das Eindringen von Ionen, also elektrisch geladenen Teilchen, in die Zelle. Fällt Licht ins Auge, öffnet er sich und lässt Natrium- und Calcium-Ionen in die Sehzelle ein. Dadurch ändert sich die elektrische Spannung an der Zellmembran und es wird ein elektrisches Signal erzeugt, das zu den Nervenzellen weitergeleitet wird.

Dr. Olaf Voolstra vom Fachgebiet Biosensorik erklärt, wie dann der Schalter umgelegt wird: „Das eingeströmte Calcium sorgt dafür, dass ein Enzym innerhalb der Zelle eine an den TRP-Kanal angedockte Phosphatgruppe entfernt. Sobald das passiert ist, kann die Fliege Bildreize schneller verarbeiten.“

Genetik liefert den Beweis

Um die Bedeutung des molekularen Schalters zu beweisen, veränderten die Wissenschaftler der Universität Hohenheim das Erbgut von Fruchtfliegen auf zwei Arten: bei einer Gruppe Fliegen in der Weise, dass die Phosphatgruppe sich von vornherein nicht an den Ionenkanal hängen kann, der Schalter also permanent auf „An“ steht.

Bei einer zweiten Gruppe Fliegen veränderten sie die Aminosäure des TRP-Kanals, die normalerweise nur im Dunkeln die Phosphatgruppe trägt, so, dass der Zelle eine dauerhafte Anheftung der Phosphatgruppe vorgetäuscht wird. Der Schalter bleibt bei diesen Fliegen unabhängig vom Lichteinfall auf Position „Aus“: Sie können Bilder nur langsam auflösen.

Anhand dieser gentechnisch modifizierten Fliegen lieferte das Team aus Israel den praktischen Nachweis: Bei beiden Fliegenvariationen testeten die Forscher, wie schnell Bildreize bei sich ändernden Lichtverhältnissen verarbeitet wurden. Dazu wurden die Fliegen den schnellen Lichtreizen eines Stroboskops ausgesetzt. Mittels einer Elektrode maßen die Forscher, wie gut das Auge den schnell wechselnden Lichtreizen folgen kann.

Fliegen, bei denen der Schalter auf Zellebene permanent auf „An“ stand, konnten den Lichtreizen auch dann noch folgen, wenn sie mit einer hohen Frequenz erfolgten. Die anderen Fliegen brauchten mindestens acht Sekunden, um sich an das Licht zu gewöhnen und die Nachricht eines Bildreizes ans Gehirn weiterzugeben.

Der TRP-Kanal: Wichtiger Teil der Nervenzelle

Auch nachdem die Existenz des Schalters bestätigt ist, bleiben noch Fragen offen. Ihnen wollen die Forscher sich als nächstes widmen, so Dr. Voolstra: „Wir wollen nun das Enzym genauer untersuchen, das die Ablösung der Phosphatgruppe bewerkstelligt, also den Schalter umlegt.“

Auch wenn die Forschungsergebnisse speziell für das Fliegenauge gelten: Die Erkenntnisse könnten langfristig auch bei Forschungsfragen zu menschlichen Zellen helfen. „In der menschlichen Sehzelle gibt es zwar keine TRP-Kanäle“, erklärt Prof. Dr. Huber. „Sie kommen aber in anderen Arten von Nervenzellen vor, die zum Beispiel für die Wahrnehmung von Hitze und Schmerzen auf der Haut oder auch den Schlafrhythmus zuständig sind.“

* D. Barsch, F. Klebs, Universität Hohenheim, 70599 Stuttgart

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de (ID: 44838701)