Suchen

Mikrofluidik Form und Morphologie von Zellen in Echtzeit bestimmen

| Autor/ Redakteur: Andrea Weber-Tuckermann* / Dipl.-Chem. Marc Platthaus

Ulmer Physiker haben ein optisches Messverfahren entwickelt, mit dem es möglich ist, in einem Medium suspendierte Zellen in Echtzeit zu analysieren. Hierzu verwenden sie spezielle Mikrokanäle und einen optimierten Auswertealgorithmus. Warum die Forscher ihre Technologie auf einer Messe mithilfe von Kunststoffenten erklären, erfahren Sie in diesem Beitrag.

Firmen zum Thema

Mikrochip mit Vorsatzlinse zur optischen Erfassung von Bewegungen
Mikrochip mit Vorsatzlinse zur optischen Erfassung von Bewegungen
(Bild: Irina Schrezenmeier)

Ulm – Im Gegensatz zur so genannten optischen Deformationszytometrie - einem Verfahren, das heute bereits zur Zellanalyse eingesetzt wird und bei dem jede einzelne Zelle mit einer Hochgeschwindigkeitskamera aufgenommen wird - ist das neu entwickelte Verfahren schneller und kostengünstiger. Wissenschaftlich betreut und tatkräftig unterstützt wurden die Nachwuchsforscher dabei von Professor Othmar Marti, dem Leiter des Instituts für Experimentelle Physik an der Universität Ulm.

„Relevant für unser Verfahren sind allein die Unterschiede zwischen zwei aufeinanderfolgenden Bildern. Mithilfe eines speziellen Auswertungsalgorithmus können wir dann die Form, Fließgeschwindigkeit und Morphologie der Zelle bestimmen“, erklärt Tobias Neckernuß, der wie sein Kollege Daniel Geiger am Institut für experimentelle Physik der Universität Ulm promoviert.

Bildergalerie

Das Verfahren ist schneller, preisgünstiger und erlaubt Echtzeitanalysen

„Der große Vorteil der neuen Technik ist, dass die dabei anfallenden Datenmengen viel geringer sind und damit sogar die Echtzeitauswertung hunderter Zellen pro Sekunde möglich ist“, erläutert Geiger. Das Verfahren ist zudem preisgünstiger als herkömmliche Untersuchungsmethoden für suspendierte Zellen und kommt ohne biochemische Färbeprozesse aus. „Bei Bedarf sollen zukünftig auch einzelne Zellen zur Analyse aussortiert werden, beispielsweise um sie später per Infusion in den Blutkreislauf eines Patienten zurückzuführen“, hoffen die Forscher, die das neue Verfahren 2016 über die Universität zum Patent angemeldet haben.

Vielversprechend ist die Neuentwicklung auch im Hinblick auf die Analyse von mechanischen Zelleigenschaften, was insbesondere für die Krebsforschung und -Diagnose eine wichtige Rolle spielen könnte. Zwar sind hierfür Mikrokanäle mit einer speziellen Form erforderlich, die schnelle Umsetzung in die Praxis sollte aber kein Problem sein. Denn auch die Expertise zur Herstellung dieser speziellen Kanäle ist am Institut bereits vorhanden.

„Wir möchten auf der Sensor + Test in Nürnberg unsere Neuentwicklung der Industrie präsentieren und erhoffen uns zudem Einblicke in mögliche Absatzmärkte für das von uns entwickelte Verfahren zur Zelldetektion“, so Geiger und Neckernuß. Und wer weiß, vielleicht ergibt sich dort auch der ein oder andere Hinweis auf weitere – nichtmedizinische – Anwendungen. Denn mit dieser neuen Technologie können alle möglichen Teilchen analysiert werden, die mit hoher Geschwindigkeit am Sensor vorbeifließen. „Interessant könnte diese Technologie auch für die Partikeldetektion in unterschiedlichen Umgebungen sein; beispielsweise in Reinräumen, auf sensiblen Oberflächen oder etwa in Maschinen“, so Geiger. „Wir freuen uns auf jeden Fall auf den Messeauftritt und sind zuversichtlich, dass unsere Technologie auf großes Interesse stoßen wird“, sagt Neckernuß.

Mit Kunststoffenten als Demonstrationsobjekt

Für ihren Messeauftritt haben die jungen Wissenschaftler eigens ein besonders anschauliches Modell im vergrößerten Maßstab anfertigen lassen, das den Besuchern die Funktionsweise des optischen Messverfahrens vor Augen führen soll. Ein echter Hingucker sind dabei sicherlich die gelben Plastikentchen, die in einer schmalen Wasserbahn an einem speziell gefertigten Sensormodell vorbeischwimmen. Gebaut wurde das von Geiger und Neckernuß entwickelte Design in der Wissenschaftlichen Werkstatt der Universität Ulm. Um die spezielle Programmierung der Modellapparatur kümmerte sich Physikstudent Jonas Pfeil.

* A. Weber-Tuckermann, Universität Ulm, 89081 Ulm

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de (ID: 44712652)